Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques
暂无分享,去创建一个
Nira Dyn | Francesc Aràndiga | Basarab Matei | Albert Cohen | Rosa Donat | A. Cohen | N. Dyn | F. Aràndiga | R. Donat | Basarab Matei
[1] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[2] E. Candès. New tight frames of curvelets and optimal representations of objects with C² singularities , 2002 .
[3] Stéphane Mallat,et al. Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.
[4] Emmanuel J. Candès,et al. Curvelets and Curvilinear Integrals , 2001, J. Approx. Theory.
[5] Basarab Matei. Smoothness characterization and stability in nonlinear multiscale framework: theoretical results , 2005 .
[6] Richard Baraniuk,et al. Multiscale Approximation of Piecewise Smooth Two-Dimensional Functions using Normal Triangulated Meshes , 2005 .
[7] Sergio Amat,et al. Data Compression with ENO Schemes: A Case Study☆☆☆ , 2001 .
[8] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[9] A. Harten. Multiresolution representation of data: a general framework , 1996 .
[10] A. Harti. Discrete multi-resolution analysis and generalized wavelets , 1993 .
[11] N. Dyn,et al. Adaptive thinning for bivariate scattered data , 2002 .
[12] R. L. Claypoole,et al. Nonlinear wavelet transforms for image coding , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).
[13] Tony F. Chan,et al. ENO-Wavelet Transforms for Piecewise Smooth Functions , 2002, SIAM J. Numer. Anal..
[14] Thierry Blu,et al. Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..
[15] Jean-Luc Starck,et al. Very high quality image restoration by combining wavelets and curvelets , 2001, SPIE Optics + Photonics.
[16] Basarab Matei. Méthodes multirésolutions non-linéaires : applications au traitement d'image , 2002 .
[17] R. DeVore,et al. Degree of Adaptive Approximation , 1990 .
[18] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[19] Richard G. Baraniuk,et al. Nonlinear wavelet transforms for image coding via lifting , 2003, IEEE Trans. Image Process..
[20] Stéphane Mallat,et al. Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..
[21] S. Mallat. A wavelet tour of signal processing , 1998 .
[22] Minh N. Do,et al. Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .
[23] Francesc Aràndiga,et al. Nonlinear multiscale decompositions: The approach of A. Harten , 2000, Numerical Algorithms.
[24] I. Daubechies,et al. Tree Approximation and Optimal Encoding , 2001 .
[25] A. Harten. ENO schemes with subcell resolution , 1989 .
[26] Justin K. Romberg,et al. Wavelet-domain approximation and compression of piecewise smooth images , 2006, IEEE Transactions on Image Processing.
[27] Nira Dyn,et al. Adaptive Thinning for Terrain Modelling and Image Compression , 2005, Advances in Multiresolution for Geometric Modelling.
[28] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[29] Neil A. Dodgson,et al. Advances in Multiresolution for Geometric Modelling , 2005 .
[30] Nira Dyn,et al. Interpolation and Approximation of Piecewise Smooth Functions , 2005, SIAM J. Numer. Anal..
[31] Albert Cohen,et al. Edge adapted nonlinear multiscale transforms for compact image representation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).