The analysis of batch sojourn-times in polling systems

We consider a cyclic polling system with general service times, general switch-over times, and simultaneous batch arrivals. This means that at an arrival epoch, a batch of customers may arrive simultaneously at the different queues of the system. For the exhaustive service discipline, we study the batch sojourn-time, which is defined as the time from an arrival epoch until service completion of the last customer in the batch. We obtain exact expressions for the Laplace–Stieltjes transform of the steady-state batch sojourn-time distribution, which can be used to determine the moments of the batch sojourn-time and, in particular, its mean. However, we also provide an alternative, more efficient way to determine the mean batch sojourn-time, using mean value analysis. We briefly show how our framework can be applied to other service disciplines: locally gated and globally gated. Finally, we compare the batch sojourn-times for different service disciplines in several numerical examples. Our results show that the best performing service discipline, in terms of minimizing the batch sojourn-time, depends on system characteristics.

[1]  Leslie D. Servi,et al.  A Distributional Form of Little's Law , 2018 .

[2]  Gordon F. Newell,et al.  A Single Server , 1979 .

[3]  Hideaki Takagi,et al.  Analysis and Application of Polling Models , 2000, Performance Evaluation.

[4]  Gautam Choudhury ANALYSIS OF THE MX=G=1 QUEUEING SYSTEM WITH VACATION TIMES , 2002 .

[5]  Hanoch Levy,et al.  Cyclic reservation schemes for efficient operation of multiple-queue single-server systems , 1992, Ann. Oper. Res..

[6]  Onno J. Boxma,et al.  A pseudoconservation law for service systems with a polling table , 1990, IEEE Trans. Commun..

[7]  Moshe Sidi,et al.  Polling systems: applications, modeling, and optimization , 1990, IEEE Trans. Commun..

[8]  D C LittleJohn A Proof for the Queuing Formula , 1961 .

[9]  Leonard Kleinrock,et al.  The Analysis of Random Polling Systems , 1988, Oper. Res..

[10]  J D Littler,et al.  A PROOF OF THE QUEUING FORMULA , 1961 .

[11]  H. Levy,et al.  Polling systems with simultaneous arrivals , 1991, IEEE Trans. Commun..

[12]  Jacques Resing,et al.  Polling systems and multitype branching processes , 1993, Queueing Syst. Theory Appl..

[13]  Ivo J. B. F. Adan,et al.  The stochastic economic lot scheduling problem: A survey , 2011, Eur. J. Oper. Res..

[14]  Tetsuya Takine,et al.  Analysis of a Polling System with Correlated Input , 1990, Comput. Networks ISDN Syst..

[15]  Mandyam M. Srinivasan,et al.  Descendant set: an efficient approach for the analysis of polling systems , 1994, IEEE Trans. Commun..

[16]  Ronald W. Wolff,et al.  Poisson Arrivals See Time Averages , 1982, Oper. Res..

[17]  René M. B. M. de Koster,et al.  A review on stochastic models and analysis of warehouse operations , 2011, Logist. Res..

[18]  Robert D. van der Mei,et al.  Applications of polling systems , 2011, ArXiv.

[19]  高木 英明,et al.  Analysis of polling systems , 1986 .

[20]  J. Little A Proof for the Queuing Formula: L = λW , 1961 .

[21]  Robert D. van der Mei,et al.  Waiting-Time Distributions in Polling Systems with Simultaneous Batch Arrivals , 2002, Ann. Oper. Res..

[22]  Martin Eisenberg,et al.  Queues with Periodic Service and Changeover Time , 1972, Oper. Res..

[23]  Kees Jan Roodbergen,et al.  Routing methods for warehouses with multiple cross aisles , 2001 .

[24]  C. de Montmollin,et al.  Contribution à l’étude de la tuberculose trachéo·bronchique , 1945 .

[25]  Robert D. van der Mei,et al.  Waiting times in queueing networks with a single shared server , 2012, Queueing Systems.

[26]  Vincent Hodgson,et al.  The Single Server Queue. , 1972 .

[27]  A. Federgruen,et al.  The Impact of Adding a Make-To-Order Item to a Make-To-Stock Production System , 1999 .

[28]  Ward Whitt,et al.  Computing Distributions and Moments in Polling Models by Numerical Transform Inversion , 1996, Perform. Evaluation.

[29]  Mandyam M. Srinivasan,et al.  On pseudo-conservation laws for the cyclic server system with compound Poisson arrivals , 1991, Oper. Res. Lett..

[30]  Ivo J. B. F. Adan,et al.  Mean value analysis for polling systems , 2006, Queueing Syst. Theory Appl..

[31]  Robert D. van der Mei,et al.  Web Server Performance Modeling , 2001, Telecommun. Syst..

[32]  Yutaka Baba,et al.  On the Mx/G /1 queue with vacation time , 1986 .

[33]  K. M. Kosinski,et al.  Queue lengths and workloads in polling systems , 2011, Oper. Res. Lett..

[34]  R. D. van der Mei POLLING SYSTEMS WITH SIMULTANEOUS BATCH ARRIVALS , 2001 .