Design and performance of the prototype Schwarzschild-Couder telescope camera

Abstract. The prototype Schwarzschild-Couder Telescope (pSCT) is a candidate for a medium-sized telescope in the Cherenkov Telescope Array. The pSCT is based on a dual-mirror optics design that reduces the plate scale and allows for the use of silicon photomultipliers as photodetectors. The prototype pSCT camera currently has only the central sector instrumented with 25 camera modules (1600 pixels), providing a 2.68-deg field of view (FoV). The camera electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits. Field programmable gate arrays sample incoming signals at a gigasample per second. A single backplane provides camera-wide triggers. An upgrade of the pSCT camera that will fully populate the focal plane is in progress. This will increase the number of pixels to 11,328, the number of backplanes to 9, and the FoV to 8.04 deg. Here, we give a detailed description of the pSCT camera, including the basic concept, mechanical design, detectors, electronics, current status, and first light.

[1]  F. R. Pantaleo,et al.  Detection of the Crab Nebula by the prototype Schwarzschild-Couder Telescope , 2021, 2109.06225.

[2]  E. Pueschel,et al.  Prototype Schwarzschild-Couder Telescope for the Cherenkov Telescope Array: Commissioning the Optical System , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[3]  F. R. Pantaleo,et al.  Detection of the Crab Nebula with the 9.7 m Prototype Schwarzschild-Couder Telescope , 2020, Astroparticle Physics.

[4]  F. Licciulli,et al.  Verification of the optical system of the 9.7-m prototype Schwarzschild-Couder Telescope , 2020, Optical Engineering + Applications.

[5]  Thomas Meures,et al.  Upgrading the Prototype Schwarzschild-Couder Telescope Camera to a Wide-Field, High-Resolution Instrument , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[6]  Nicola Zorzi,et al.  NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler , 2019, Sensors.

[7]  H. Sol,et al.  Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[8]  G. Drake,et al.  An image-based array trigger for Imaging Atmospheric Cherenkov Telescope Arrays , 2018, 1802.05715.

[9]  R. White CHEC: a Compact High Energy Camera for the Cherenkov Telescope Array , 2017, 1712.00354.

[10]  V. Vassiliev,et al.  Prototype 9.7m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: Project Overview , 2017 .

[11]  M. Limon,et al.  Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system , 2017, 1709.06324.

[12]  R. Paoletti,et al.  Silicon Photomultipliers and front-end electronics performance for Cherenkov Telescope Array camera development , 2017 .

[13]  S. Funk,et al.  TARGET 5: A new multi-channel digitizer with triggering capabilities for gamma-ray atmospheric Cherenkov telescopes , 2016, 1607.02443.

[14]  G. Drake,et al.  The FTK to Level-2 Interface Card (FLIC) for the ATLAS experiment , 2015, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[15]  S. Funk,et al.  Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array , 2015, 1509.02345.

[16]  Anthony M. Brown,et al.  Flasher and muon-based calibration of the GCT telescopes proposed for the Cherenkov Telescope Array , 2015, 1509.00185.

[17]  G. S. Varner,et al.  TARGET: toward a solution for the readout electronics of the Cherenkov Telescope Array , 2015, 1508.06296.

[18]  K. Meagher,et al.  Silicon photomultiplier integration in the camera of the mid-size Schwarzschild–Couder Cherenkov telescope for CTA , 2015 .

[19]  J. Biteau Characterization of silicon photomultipliers for the Cherenkov Telescope Array medium-sized telescopes , 2014, 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[20]  G. S. Varner,et al.  A Compact High Energy Camera for the Cherenkov Telescope Array , 2013, 1307.2807.

[21]  V. Golev,et al.  Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy , 2011 .

[22]  S. Funk,et al.  TARGET: A multi-channel digitizer chip for very-high-energy gamma-ray telescopes , 2011, 1105.1832.

[23]  Clive G. Page,et al.  Definition of the Flexible Image Transport System (FITS), version 3.0 , 2010 .

[24]  D. Hanna,et al.  An LED-based flasher system for VERITAS , 2009, 0911.2015.

[25]  V. V. Vassiliev,et al.  Schwarzschild-Couder two-mirror telescope for ground-based gamma-ray astronomy , 2007, 0708.2741.

[26]  S. Vercellone,et al.  Monte Carlo studies for the optimisation of the Cherenkov Telescope Array , 2019 .