Identifying correlations between LIGO’s astronomical range and auxiliary sensors using lasso regression

The range to which the Laser Interferometer Gravitational-Wave Observatory (LIGO) can observe astrophysical systems varies over time, limited by noise in the instruments and their environments. Identifying and removing the sources of noise that limit LIGO’s range enables higher signal-to-noise observations and increases the number of observations. The LIGO observatories are continuously monitored by hundreds of thousands of auxiliary channels that may contain information about these noise sources. This paper describes an algorithm that uses linear regression, namely lasso (least absolute shrinkage and selection operator) regression, to analyze all of these channels and identify a small subset of them that can be used to reconstruct variations in LIGO’s astrophysical range. Exemplary results of the application of this method to three different periods of LIGO Livingston data are presented, along with computational performance and current limitations.

[1]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[2]  H. Kurokawa,et al.  Beating the spin-down limit on gravitational wave emission from the crab pulsar , 2020 .

[3]  A. Katsaggelos,et al.  Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning , 2019, Physical Review D.

[4]  A. Markosyan,et al.  Apparatus to Measure Optical Scatter of Coatings Versus Annealing Temperature , 2019, Optical Interference Coatings Conference (OIC) 2019.

[5]  B. A. Boom,et al.  Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube , 2018, The Astrophysical Journal.

[6]  P. J. King,et al.  Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO , 2018, Physical Review D.

[7]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[8]  B. A. Boom,et al.  Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. , 2018, Physical review letters.

[9]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[10]  Aggelos K. Katsaggelos,et al.  Machine learning for Gravity Spy: Glitch classification and dataset , 2018, Inf. Sci..

[11]  M. S. Shahriar,et al.  Full band all-sky search for periodic gravitational waves in the O1 LIGO data , 2018, 1802.05241.

[12]  J. R. Palamos,et al.  Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO , 2018, 1801.07204.

[13]  Y. Wang,et al.  Constraints on cosmic strings using data from the first Advanced LIGO observing run , 2017, 1712.01168.

[14]  B. A. Boom,et al.  All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run , 2017, Classical and Quantum Gravity.

[15]  B. A. Boom,et al.  GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences , 2017, 1710.05837.

[16]  Y. Wang,et al.  Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run , 2017, 1710.02185.

[17]  B. A. Boom,et al.  First Search for Nontensorial Gravitational Waves from Known Pulsars. , 2017, Physical review letters.

[18]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[19]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[20]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[21]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[22]  J. Worden,et al.  Effects of transients in LIGO suspensions on searches for gravitational waves. , 2017, The Review of scientific instruments.

[23]  Joshua R Smith,et al.  LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO scientific collaboration , 2016, Astron. Comput..

[24]  Y. Wang,et al.  Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 , 2016, 1602.03845.

[25]  T. D. Abbott,et al.  Validating gravitational-wave detections: The advanced LIGO hardware injection system , 2016, 1612.07864.

[26]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[27]  R. Bork,et al.  Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy , 2016, 1604.00439.

[28]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[29]  Ismo Hakala,et al.  Effects of temperature and humidity on radio signal strength in outdoor wireless sensor networks , 2015, 2015 Federated Conference on Computer Science and Information Systems (FedCSIS).

[30]  A. P. Lundgren,et al.  Improving the data quality of Advanced LIGO based on early engineering run results , 2015, 1508.07316.

[31]  Jr.,et al.  Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data , 2014, 1410.8310.

[32]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[33]  J. K. Blackburn,et al.  Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors , 2020 .

[34]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[35]  Michael E. Loverude,et al.  A collaboration to support novice instructors in research-based astronomy teaching , 2014, 1411.5738.

[36]  R. Schofield,et al.  Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.

[37]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[38]  S. Klimenko,et al.  Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. , 2014, Physical review letters.

[39]  J. K. Blackburn,et al.  First All-sky Search for Continuous Gravitational Waves from Unknown Sources in Binary Systems , 2022 .

[40]  M. S. Shahriar,et al.  Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors , 2014, 1405.1053.

[41]  J. K. Blackburn,et al.  Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run , 2014, 1404.2199.

[42]  S. Klimenko,et al.  Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network. , 2014, Physical review letters.

[43]  J. K. Blackburn,et al.  Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in Ligo-virgo Data from 2005–2010 , 2022 .

[44]  M. S. Shahriar,et al.  Implementation of an F ?> -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data , 2014, 1402.4974.

[45]  M. S. Shahriar,et al.  The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations , 2014, 1401.0939.

[46]  F. Magaña-Sandoval,et al.  Low scatter and ultra-low reflectivity measured in a fused silica window. , 2013, Applied optics.

[47]  J. K. Blackburn,et al.  Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run , 2013, 1311.2409.

[48]  S. Klimenko,et al.  Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. , 2013, Physical review letters.

[49]  C. Baltay,et al.  FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS , 2013, The Astrophysical Journal Supplement Series.

[50]  J. K. Blackburn,et al.  Gravitational waves from known pulsars: Results from the initial detector era , 2013, 1309.4027.

[51]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[52]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[53]  K. S. Thorne,et al.  Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data , 2012, Physical Review D.

[54]  K. S. Thorne,et al.  A First Search for Coincident Gravitational Waves and High Energy Neutrinos Using LIGO, Virgo and ANTARES Data from 2007 , 2012, 1205.3018.

[55]  C. Broeck,et al.  Search for Gravitational Waves from Binary Black Hole Inspiral, Merger and Ringdown in LIGO-Virgo Data from 2009–2010 , 2013 .

[56]  C. Broeck,et al.  SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3 , 2012, 1205.2216.

[57]  David Blair,et al.  First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts , 2022 .

[58]  K. S. Thorne,et al.  SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS , 2012, 1205.1124.

[59]  Large-angle scattered light measurements for quantum-noise filter cavity design studies. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[60]  K. S. Thorne,et al.  The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.

[61]  K. S. Thorne,et al.  All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.

[62]  J. K. Blackburn,et al.  Search for gravitational waves from intermediate mass binary black holes , 2012, 1201.5999.

[63]  K. S. Thorne,et al.  Implications For The Origin Of GRB 051103 From LIGO Observations , 2012, 1201.4413.

[64]  C. Broeck,et al.  Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz , 2011, 1112.5004.

[65]  C. Broeck,et al.  Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3 , 2011, 1111.7314.

[66]  C. Broeck,et al.  All-sky search for periodic gravitational waves in the full S5 LIGO data , 2022 .

[67]  S. Fairhurst,et al.  Reducing the effect of seismic noise in LIGO searches by targeted veto generation , 2011, 1108.0312.

[68]  T. Hayler,et al.  Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts , 2011, 1109.3498.

[69]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[70]  J. K. Blackburn,et al.  Directional limits on gravitational waves using LIGO S5 science data , 2011 .

[71]  Joshua R. Smith,et al.  A hierarchical method for vetoing noise transients in gravitational-wave detectors , 2011, 1107.2948.

[72]  T. Hayler,et al.  Search for gravitational waves from binary black hole inspiral, merger and ringdown , 2011, 1102.3781.

[73]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[74]  C. Broeck,et al.  SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS , 2010, 1011.4079.

[75]  J. K. Blackburn,et al.  Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar , 2010, 1011.1357.

[76]  G. M. Harry,et al.  Optical coatings and thermal noise in precision measurement , 2011 .

[77]  T. Hayler,et al.  Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .

[78]  K. S. Thorne,et al.  Calibration of the LIGO gravitational wave detectors in the fifth science run , 2010, 1007.3973.

[79]  J. K. Blackburn,et al.  FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR , 2010, 1006.2535.

[80]  Joshua R. Smith,et al.  Methods for reducing false alarms in searches for compact binary coalescences in LIGO data , 2010, 1004.0998.

[81]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[82]  The LIGO Scientific Collaboration,et al.  All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run , 2010, 1002.1036.

[83]  T. Hayler,et al.  SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN , 2010, 1001.0165.

[84]  J. K. Blackburn,et al.  SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1 , 2009, 0908.3824.

[85]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[86]  T. Hayler,et al.  Observation of a kilogram-scale oscillator near its quantum ground state , 2009 .

[87]  L. S. Collaboration,et al.  Einstein@Home search for periodic gravitational waves in early S5 LIGO data , 2009, 0905.1705.

[88]  et al,et al.  Search for gravitational-wave bursts in the first year of the fifth LIGO science run , 2009, 0905.0020.

[89]  E. al.,et al.  Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run , 2009, 0904.4910.

[90]  L. S. Collaboration Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm , 2009, 0905.0005.

[91]  I Wilmut,et al.  All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data. , 2009, Physical review letters.

[92]  J. Smith,et al.  The path to the enhanced and advanced LIGO gravitational-wave detectors , 2009, 0902.0381.

[93]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[94]  A. Freise,et al.  DC-readout of a signal-recycled gravitational wave detector , 2008, 0811.3242.

[95]  S. Klimenko,et al.  Search for Gravitational Wave Bursts from Soft Gamma Repeaters , 2008, 0808.2050.

[96]  First joint search for gravitational-wave bursts in LIGO and GEO 600 data , 2008, 0807.2834.

[97]  M. M. Casey,et al.  A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO , 2007, 0710.0497.

[98]  C. Broeck,et al.  BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR , 2008, 0805.4758.

[99]  M. M. Casey,et al.  Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs , 2008 .

[100]  Joshua R. Smith,et al.  Measurement and simulation of laser power noise in GEO 600 , 2008 .

[101]  M. M. Casey,et al.  All-sky search for periodic gravitational waves in LIGO S4 data , 2007, 0708.3818.

[102]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[103]  M. M. Casey,et al.  Search for gravitational-wave bursts in LIGO data from the fourth science run , 2007, 0704.0943.

[104]  Joshua R. Smith,et al.  Implications for the origin of GRB 070201 from LIGO observations , 2007 .

[105]  Joshua R. Smith,et al.  Photon-pressure-induced test mass deformation in gravitational-wave detectors , 2007, 0710.1229.

[106]  Benno Willke,et al.  Demonstration and comparison of tuned and detuned signal recycling in a large-scale gravitational wave detector , 2007 .

[107]  E. al.,et al.  Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds , 2007, gr-qc/0703068.

[108]  et al,et al.  Upper limit map of a background of gravitational waves (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (082003)) , 2007, astro-ph/0703234.

[109]  M. M. Casey,et al.  Upper limits on gravitational wave emission from 78 radio pulsars (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (042001)) , 2007, gr-qc/0702039.

[110]  H. Lück,et al.  Measurement of a low-absorption sample of OH-reduced fused silica. , 2006, Applied optics.

[111]  J. Smith,et al.  Robust vetoes for gravitational-wave burst triggers using known instrumental couplings , 2006, gr-qc/0605079.

[112]  T. Hayler,et al.  Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run , 2006 .

[113]  Bernard F. Schutz,et al.  Status of the GEO600 detector , 2006 .

[114]  M. M. Casey,et al.  The GEO-HF project , 2006 .

[115]  M. M. Casey,et al.  Search for gravitational-wave bursts in LIGO's third science run , 2006 .

[116]  Joshua R. Smith,et al.  A photon pressure calibrator for the GEO 600 gravitational wave detector , 2006 .

[117]  M. M. Casey,et al.  Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries , 2006 .

[118]  J. Smith,et al.  Towards gravitational wave astronomy: Commissioning and characterization of GEO600 , 2006 .

[119]  Benno Willke,et al.  Linear projection of technical noise for interferometric gravitational-wave detectors , 2006 .

[120]  Benno Willke,et al.  Optimal time-domain combination of the two calibrated output quadratures of GEO 600 , 2005 .

[121]  LIGO Scientific Collaboration B. Abbott et. al,et al.  Search for gravitational waves from binary black hole inspirals in LIGO data , 2005, gr-qc/0509129.

[122]  M. M. Casey,et al.  Upper limits on gravitational wave bursts in LIGO's second science run , 2005 .

[123]  et al,et al.  First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform , 2005, gr-qc/0508065.

[124]  Bernard F. Schutz,et al.  Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors , 2005 .

[125]  Joshua R. Smith,et al.  Feedforward correction of mirror misalignment fluctuations for the GEO 600 gravitational wave detector , 2005 .

[126]  Joshua R. Smith,et al.  Results from the first burst hardware injections performed on GEO 600 , 2005 .

[127]  M. M. Casey,et al.  Upper limits on a stochastic background of gravitational waves. , 2005, Physical review letters.

[128]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.

[129]  E. al.,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005, gr-qc/0505042.

[130]  M. M. Casey,et al.  Limits on gravitational-wave emission from selected pulsars using LIGO data. , 2004, Physical review letters.

[131]  Kenneth A. Strain,et al.  Principles of calibrating the dual-recycled GEO 600 , 2004 .

[132]  M. M. Casey,et al.  Commissioning, characterization and operation of the dual-recycled GEO 600 , 2004 .

[133]  S. Babak,et al.  Calibration of the dual-recycled GEO 600 detector for the S3 science run , 2004 .

[134]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[135]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[136]  Martin M. Fejer,et al.  Mechanical quality factor measurements of monolithically suspended fused silica test masses of the GEO 600 gravitational wave detector , 2004 .

[137]  Karsten Danzmann,et al.  Damping and tuning of the fibre violin modes in monolithic silica suspensions , 2004 .

[138]  Joshua R. Smith,et al.  The status of GEO 600 , 2004, SPIE Astronomical Telescopes + Instrumentation.

[139]  E. al.,et al.  Analysis of First LIGO Science Data for Stochastic Gravitational Waves , 2003, gr-qc/0312088.

[140]  G. Woan,et al.  Upper limits on the strength of periodic gravitational waves from PSR J1939+2134 , 2003, gr-qc/0311023.

[141]  S. Ballmer,et al.  Se p 20 03 Detector Description and Performance for the First Coincidence Observations between LIGO and GEO The LIGO Scientific Collaboration , 2008 .

[142]  R. Adhikari,et al.  Sensitivity and noise analysis of 4 km laser interferometric gravitational wave antennae , 2004 .

[143]  M. M. Casey,et al.  Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors , 2004 .

[144]  E. al.,et al.  First upper limits from LIGO on gravitational wave bursts , 2003, gr-qc/0312056.

[145]  Joshua R. Smith,et al.  Mechanical loss associated with silicate bonding of fused silica , 2003 .

[146]  M. M. Casey,et al.  A report on the status of the GEO 600 gravitational wave detector , 2003 .

[147]  M. M. Casey,et al.  Detector characterization in GEO 600 , 2003 .

[148]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[149]  Joshua R. Smith,et al.  High quality factor measured in fused silica , 2000, gr-qc/0009035.

[150]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[151]  V. Paxson,et al.  Notices of the American Mathematical Society , 1998 .

[152]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[153]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[154]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.