DAE-CNN: Exploiting and disentangling contrast agent effects for breast lesions classification in DCE-MRI

[1]  Iasonas Kokkinos,et al.  Deforming Autoencoders: Unsupervised Disentangling of Shape and Appearance , 2018, ECCV.

[2]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[3]  Scott Fields,et al.  Mapping pathophysiological features of breast tumors by MRI at high spatial resolution , 1997, Nature Medicine.

[4]  Stefano Marrone,et al.  An Investigation of Deep Learning for Lesions Malignancy Classification in Breast DCE-MRI , 2017, ICIAP.

[5]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[6]  Antonella Petrillo,et al.  A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI , 2012, SSPR/SPR.

[7]  Dorit Merhof,et al.  Transfer Learning for Breast Cancer Malignancy Classification based on Dynamic Contrast-Enhanced MR Images , 2018, Bildverarbeitung für die Medizin.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Stefano Marrone,et al.  3TP-CNN: Radiomics and Deep Learning for Lesions Classification in DCE-MRI , 2019, ICIAP.

[10]  Yong Xia,et al.  D-UNet: A Dimension-Fusion U Shape Network for Chronic Stroke Lesion Segmentation , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[11]  Jae Y. Shin,et al.  Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? , 2016, IEEE transactions on medical imaging.

[12]  Stefano Marrone,et al.  Evaluating Impacts of Motion Correction on Deep Learning Approaches for Breast DCE-MRI Segmentation and Classification , 2019, CAIP.

[13]  Guan Gui,et al.  Transfer Learning-Based DCE-MRI Method for Identifying Differentiation Between Benign and Malignant Breast Tumors , 2020, IEEE Access.

[14]  Stefano Marrone,et al.  DCE-MRI Breast Lesions Segmentation with a 3TP U-Net Deep Convolutional Neural Network , 2019, 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS).

[15]  Mario Sansone,et al.  Use of Tracer Kinetic Models for Selection of Semi-Quantitative Features for DCE-MRI Data Classification , 2013 .

[16]  Natalia Antropova,et al.  A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets , 2017, Medical physics.

[17]  Jane Wardle,et al.  Screening for prevention and early diagnosis of cancer. , 2015, The American psychologist.

[18]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[20]  A. Ben Hamza,et al.  Melanoma detection using adversarial training and deep transfer learning , 2020, Physics in medicine and biology.

[21]  C. Gatsonis,et al.  MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. , 2007, The New England journal of medicine.

[22]  G. Faguet,et al.  A brief history of cancer: Age‐old milestones underlying our current knowledge database , 2015, International journal of cancer.

[23]  Benjamin Q. Huynh,et al.  SU-D-207B-06: Predicting Breast Cancer Malignancy On DCE-MRI Data Using Pre-Trained Convolutional Neural Networks. , 2016, Medical physics.

[24]  Stefano Marrone,et al.  Comprehensive computer-aided diagnosis for breast T1-weighted DCE-MRI through quantitative dynamical features and spatio-temporal local binary patterns , 2018, IET Comput. Vis..

[25]  Antonella Petrillo,et al.  LBP-TOP for Volume Lesion Classification in Breast DCE-MRI , 2015, ICIAP.

[26]  R. Anderson,et al.  Cancer screening guidelines. , 2001, American family physician.

[27]  Paul Kinahan,et al.  Radiomics: Images Are More than Pictures, They Are Data , 2015, Radiology.