Metal-Oxide Nanostructures Designed by Glancing Angle Deposition Technique and Its Applications on Sensors and Optoelectronic Devices: A Review

Glancing angle deposited (GLAD) metal-oxide nanostructure films are promising materials for sensors and optoelectronic devices application due to the easy fabrication process, structural dependent properties and a large surface to volume ratio. This paper focuses on the literature reviews of metal-oxide nanostructures deposited by GLAD using all the possible deposition techniques such as thermal/electron-beam evaporation, sputtering magnetron, and pulsed laser deposition. The principle behind the formation of nanostructure through GLAD has also been discussed in details. The detailed analysis of the devices and their principle based on GLAD deposited metal-oxide nanostructures for different optoelectronic and sensor devices are also presented. This literature review will be helpful to understand and explore more on the growth of metal-oxide nanostructures using glancing angle deposition technique for futuristic sensors and optoelectronic device applications.

[1]  A. DateAbhijit,et al.  新しい安定剤としての両親媒性脂質Gelucire 50/13を含む脂質ナノキャリア(GeluPearl): 製造及び特性測定と経口薬物送達のための評価 , 2011 .

[2]  Aniruddha Mondal,et al.  Dispersed Ag nanoparticles on TiO2 nanowire clusters for photodetection , 2014, TENCON 2014 - 2014 IEEE Region 10 Conference.

[3]  Yiping Zhao,et al.  Designing nanostructures by glancing angle deposition , 2003, SPIE Optics + Photonics.

[4]  Adisorn Tuantranont,et al.  Carbon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering , 2013 .

[5]  Zhengjun Zhang,et al.  Photocatalytic properties of TiO2 thin films obtained by glancing angle deposition , 2012 .

[6]  Anurat Wisitsoraat,et al.  Fabrication and Ethanol Sensing Characterization of Tin Oxide Nanorods Prepared by Glancing Angle Deposition Technique , 2016 .

[7]  Jeremy C. Sit,et al.  Surface Functionalization of Porous Nanostructured Metal Oxide Thin Films Fabricated by Glancing Angle Deposition , 2006 .

[8]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[9]  B. Rajinikanth,et al.  Physical investigations on pulsed laser deposited nanocrystalline ZnO thin films , 2012 .

[10]  S. Mathur,et al.  12. Metal–Organic Chemical Vapor Deposition of Metal Oxide Films and Nanostructures , 2012 .

[11]  Claudia Felser,et al.  On the influence of bandstructure on transport properties of magnetic tunnel junctions with Co2Mn1−xFexSi single and multilayer electrode , 2008 .

[12]  Agustín R. González-Elipe,et al.  Perspectives on oblique angle deposition of thin films: From fundamentals to devices , 2016 .

[13]  Zhiyong Fan,et al.  ZnO nanowires synthesized by vapor trapping CVD method , 2004 .

[14]  Zhen Jin,et al.  Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review , 2012, Sensors.

[15]  T. Karabacak,et al.  Glancing angle sputter deposited nanostructures on rotating substrates: Experiments and simulations , 2008 .

[16]  S. Mohan,et al.  A novel electron beam evaporation technique for the deposition of superconducting thin films , 1991 .

[17]  M. Brett,et al.  Nanostructured Metal Oxide Thin Films for Humidity Sensors , 2008, IEEE Sensors Journal.

[18]  P. Mohanty,et al.  Metal oxide nanostructures incorporated/immobilized paper matrices and their applications: a review , 2015 .

[19]  M. Brett,et al.  Introduction: Glancing Angle Deposition Technology , 2014 .

[20]  Ednan Joanni,et al.  Self-catalyzed carbon plasma-assisted growth of tin-doped indium oxide nanostructures by the sputtering method , 2016 .

[21]  Willis X Li,et al.  CORRIGENDUM: Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signalling , 2014, Scientific Reports.

[22]  Adisorn Tuantranont,et al.  Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering. , 2014, ACS applied materials & interfaces.

[23]  Ho Won Jang,et al.  Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases , 2015 .

[24]  P. Chinnamuthu,et al.  Enlarged Photodetection Using ${\rm SiO}_{x}$ Nanowire Arrays , 2012, IEEE Photonics Technology Letters.

[25]  George Kiriakidis,et al.  Sensing using nanostructured metal oxide thin films , 2006, SPIE Optics East.

[26]  Hidekazu Tanaka,et al.  Position-, size-, and shape-controlled highly crystalline ZnO nanostructures , 2011, Nanotechnology.

[27]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[28]  Kevin Robbie,et al.  Advanced techniques for glancing angle deposition , 1998 .

[29]  Zheng Xie,et al.  Enhanced Visible Light Photocatalytic Performance by Nanostructured Semiconductors with Glancing Angle Deposition Method , 2016 .

[30]  J. Yu,et al.  Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells. , 2011, Optics express.

[31]  D. J. Frankel,et al.  Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition , 2010 .

[32]  Cock Lodder,et al.  Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data , 1994 .

[33]  S. R. Dhariwal,et al.  Theory of metal-oxide-semiconductor solar cells , 1979 .

[34]  A. Spetz,et al.  Pulsed Laser Deposition of Metal Oxide Nanoparticles, Agglomerates, and Nanotrees for Chemical Sensors , 2015 .

[35]  Seok-Jin Yoon,et al.  Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition , 2015, Sensors.

[36]  Nicholas G. Wakefield,et al.  Surface area characterization of obliquely deposited metal oxide nanostructured thin films. , 2010, Langmuir.

[37]  P. Charpentier,et al.  Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. , 2012, Chemical reviews.

[38]  M. J. Brett,et al.  Porosity engineering in glancing angle deposition thin films , 2005 .

[39]  M. J. Brett,et al.  Response time of nanostructured relative humidity sensors , 2009 .

[40]  Apu Kumar Saha,et al.  ${\rm TiO}_{2}$ Nanoparticles Arrays Ultraviolet-A Detector With Au Schottky Contact , 2014, IEEE Photonics Technology Letters.

[41]  D. E. Motaung,et al.  Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process , 2013 .

[42]  M. Reed,et al.  Indium oxide nanostructures , 2006 .

[43]  M. J. Brett,et al.  Sculptured thin films and glancing angle deposition: Growth mechanics and applications , 1997 .

[44]  Evan T. Salim,et al.  GLANCING ANGLE REACTIVE PULSED LASER DEPOSITION (GRPLD) FOR Bi2O3/Si HETEROSTRUCTURE , 2013 .

[45]  Michael J. Brett,et al.  Glancing Angle Deposition of Thin Films: Engineering the Nanoscale , 2014 .

[46]  Michael J. Brett,et al.  Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films , 2007 .

[47]  Henning Sirringhaus,et al.  Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. , 2005, Nano letters.

[48]  Reza R. Zamani,et al.  Glancing angle deposition in a pulsed laser ablation/vapor–liquid–solid grow system , 2015 .

[49]  Chuan-Pu Liu,et al.  Self-assembled Zn/ZnO dots on silicon by RF magnetron sputter , 2007, 2007 Digest of papers Microprocesses and Nanotechnology.

[50]  Monica Lira-Cantu,et al.  Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells , 2011 .