Quadrupolar susceptibility and magnetic phase diagram of PrNi2Cd20 with non-Kramers doublet ground state

ABSTRACT In this study, ultrasonic measurements were performed on a single crystal of cubic PrNi2Cd20, down to a temperature of 0.02 K, to investigate the crystalline electric field ground state and search for possible phase transitions at low temperatures. The elastic constant (C11−C12)/2, which is related to the Γ3-symmetry quadrupolar response, exhibits the Curie-type softening at temperatures below ∼30 K, which indicates that the present system has a Γ3 non-Kramers doublet ground state. A leveling-off of the elastic response appears below ∼0.1 K toward the lowest temperatures, which implies the presence of level splitting owing to a long-range order in a finite-volume fraction associated with Γ3-symmetry multipoles. A magnetic field–temperature phase diagram of the present compound is constructed up to 28 T for H || [110]. A clear acoustic de Haas–van Alphen signal and a possible magnetic-field-induced phase transition at H ∼26 T are also detected by high-magnetic-field measurements.

[1]  J. Wosnitza,et al.  Evidence for the Single-Site Quadrupolar Kondo Effect in the Dilute Non-Kramers System Y_{1-x}Pr_{x}Ir_{2}Zn_{20}. , 2019, Physical review letters.

[2]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[3]  S. Hayami,et al.  Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors , 2018, Physical Review B.

[4]  Y. Yanase,et al.  Group-theoretical classification of multipole order: Emergent responses and candidate materials , 2018, Physical Review B.

[5]  T. Takabatake,et al.  Single-Site Non-Fermi-Liquid Behaviors in a Diluted 4f^{2} System Y_{1-x}Pr_{x}Ir_{2}Zn_{20}. , 2018, Physical review letters.

[6]  H. Kusunose,et al.  Exotic Quadrupolar Phenomena in Non-Kramers Doublet Systems — The Cases of PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V, Ti) — , 2016 .

[7]  M. Maple,et al.  Nonmagnetic ground state in the cubic compounds PrNi 2 Cd 20 and PrPd 2 Cd 20 , 2015 .

[8]  M. Maple,et al.  Weak hybridization and isolated localized magnetic moments in the compounds CeT2Cd20 (T = Ni, Pd) , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  S. Nakatsuji,et al.  Heavy-fermion superconductivity in the quadrupole ordered state of PrV2Al20. , 2014, Physical review letters.

[10]  N. Dilley,et al.  Structure and physical properties of RT2Cd20 (R=rare earth, T=Ni, Pd) compounds with the CeCr2Al20-type structure , 2014 .

[11]  J. Ketterson De Haas-van Alphen effect , 2014 .

[12]  M. Akatsu,et al.  Antiferroquadrupolar ordering and magnetic-field-induced phase transition in the cage compound PrRh 2 Zn 20 , 2013 .

[13]  T. Takabatake,et al.  Well-Defined Crystal Field Splitting Schemes and Non-Kramers Doublet Ground States of f Electrons in PrT_{2}Zn , 2013 .

[14]  T. Takabatake,et al.  Well-Defined Crystal Field Splitting Schemes and Non-Kramers Doublet Ground States offElectrons in PrT2Zn20(T= Ir, Rh, and Ru) , 2013 .

[15]  Y. Kubo,et al.  Pressure-induced heavy fermion superconductivity in the nonmagnetic quadrupolar system PrTi(2)Al(20). , 2012, Physical review letters.

[16]  J. Wosnitza,et al.  Dissipation in Non-Kramers Doublet of PrMg3 , 2012 .

[17]  M. Akatsu,et al.  Antiferro-Quadrupolar Ordering at the Lowest Temperature and Anisotropic Magnetic Field–Temperature Phase Diagram in the Cage Compound PrIr2Zn20 , 2011 .

[18]  Nakatsuji Satoru,et al.  Kondo Effects and Multipolar Order in the Cubic PrTr2Al20 (Tr=Ti, V) , 2011 .

[19]  H. Sugawara,et al.  f-Electron-Nuclear Hyperfine-Coupled Multiplets in the Unconventional Charge Order Phase of Filled Skutterudite PrRu4P12 , 2011, 1105.2199.

[20]  S. Nakatsuji,et al.  Kondo Effects and Multipolar Order in the cubic PrTr2Al20 (Tr=Ti, V) , 2011, 1104.4167.

[21]  M. Akatsu,et al.  Magnetic-Field-Independent Ultrasonic Dispersions in the Magnetically Robust Heavy Fermion System SmOs4Sb12 , 2010, 1010.1387.

[22]  Y. Matsushita,et al.  Superconductivity and Structural Phase Transitions in Caged Compounds RT2Zn20 (R = La, Pr, T = Ru, Ir) , 2010 .

[23]  M. Akatsu,et al.  Quadrupole Ordering in Clathrate Compound Ce3Pd20Si6 , 2009 .

[24]  K. Tanigaki,et al.  Possible Low-Temperature Strongly Correlated Electron Behavior from Multipole Fluctuations in PrMg3 with Cubic Non-Kramers Γ3 Doublet Ground State , 2006 .

[25]  H. Suzuki,et al.  Possible observation of the quadrupolar Kondo effect in dilute quadrupolar system Pr(x)La(1-x)Pb3 for x , 2006, Physical review letters.

[26]  G. Kido,et al.  Quadrupolar Kondo Effect in Non-Kramers Doublet System PrInAg2 , 2006, cond-mat/0601430.

[27]  Albert Migliori,et al.  Physical Acoustics in the Solid State , 2006 .

[28]  T. Sakakibara,et al.  Observation of modulated quadrupolar structures in PrPb3. , 2005, Physical review letters.

[29]  M. Akatsu,et al.  Tunneling and rattling in clathrate crystal , 2004, cond-mat/0409444.

[30]  S. Kunii,et al.  Magnetic Phase Diagrams of Kondo Compounds Ce 0.75La 0.25B 6 and Ce 0.6La 0.4B 6 , 1998 .

[31]  W. Jeitschko,et al.  Ternary Rare Earth Transition Metal Zinc Compounds RT2Zn20 with T = Fe, Ru, Co, Rh, and Ni , 1997 .

[32]  Canfield,et al.  Possible Correlated-Electron Behavior from Quadrupolar Fluctuations in PrInAg2. , 1996, Physical review letters.

[33]  M. Kataoka,et al.  Theory of the Acoustic de Haas-van Alphen Effect , 1993 .

[34]  Cox,et al.  Quadrupolar Kondo effect in uranium heavy-electron materials? , 1987, Physical review letters.

[35]  A. Gossard,et al.  Properties of PrPb3 in Relation to Other L12 Phases of Pr , 1974 .

[36]  D. Tsui,et al.  de Haas-van Alphen Effect, Magnetic Breakdown, and the Fermi Surface of Cadmium , 1966 .

[37]  M. Leask,et al.  The raising of angular momentum degeneracy of f-Electron terms by cubic crystal fields , 1962 .

[38]  R. Dingle,et al.  The de Haas-van Alphen Effect , 1950, Nature.