Evolutionary Optimization in Dynamic Environments

Preface. 1. Brief Introduction to Evolutionary Algorithms. Part I: Enabling Continuous Adaptation. 2. Optimization in Dynamic Environments. 3. Survey: State of the Art. 4. From Memory to Self-Organization. 5. Empirical Evaluation. 6. Summary of Part I. Part II: Considering Adaptation Cost. 7. Adaptation Cost vs. Solution Quality. Part III: Robustness and Flexibility - Precaution against Changes. 8. Searching for Robust Solutions. 9. From Robustness to Flexibility. 10. Summary and Outlook. References. Index.

[1]  Horst Greiner Robust filter design by stochastic optimization , 1994, Other Conferences.

[2]  Thomas Bäck,et al.  Evolution Strategies on Noisy Functions: How to Improve Convergence Properties , 1994, PPSN.

[3]  André Neubauer,et al.  A Comparative Study of Evolutionary Algorithms for On-Line Parameter Tracking , 1996, PPSN.

[4]  Karsten Weicker,et al.  Dynamic rotation and partial visibility , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[5]  Adrian Thompson,et al.  Evolutionary techniques for fault tolerance , 1996 .

[6]  C. Wilke Evolution in time-dependent fitness landscapes , 1998, physics/9811021.

[7]  Robert H. Storer,et al.  Robustness Measures and Robust Scheduling for Job Shops , 1994 .

[8]  Shigeyoshi Tsutsui,et al.  Forking Genetic Algorithms: GAs with Search Space Division Schemes , 1997, Evolutionary Computation.

[9]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[10]  Jürgen Branke,et al.  Global Selection Methods for Massively Parallel Computers , 1996, Evolutionary Computing, AISB Workshop.

[11]  C. Bierwirth,et al.  Genetic algorithm based scheduling in a dynamic manufacturing environment , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[12]  Peter Ross,et al.  Producing robust schedules via an artificial immune system , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  Peter Ross,et al.  The evolution and analysis of potential antibody library for use in job-shop scheduling , 1999 .

[14]  Adrian Thompson,et al.  On the Automatic Design of Robust Electronics Through Artificial Evolution , 1998, ICES.

[15]  Peter J. Angeline,et al.  Adaptive and Self-adaptive Evolutionary Computations , 1995 .

[16]  Terence C. Fogarty,et al.  Learning the local search range for genetic optimisation in nonstationary environments , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[17]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[18]  David B. Fogel,et al.  A Comparison of Self-Adaptation Methods for Finite State Machines in Dynamic Environments , 1996, Evolutionary Programming.

[19]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[20]  R.W. Morrison,et al.  Triggered hypermutation revisited , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[21]  Andrew L. Tuson The Implementation of a Genetic Algorithm for the Scheduling and Topology Optimisation of Chemical Flowshops , 1994 .

[22]  Masaharu Munetomo,et al.  On tracking-ability of a stochastic genetic algorithm to changing environments , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[23]  K. Deb Solving goal programming problems using multi-objective genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[24]  K. De Jong,et al.  The usefulness of tag bits in changing environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[25]  Hajime Kita,et al.  Online optimization of an engine controller by means of a genetic algorithm using history of search , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[26]  Benjamin W. Wah,et al.  Scheduling of Genetic Algorithms in a Noisy Environment , 1994, Evolutionary Computation.

[27]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[28]  Philippe Collard,et al.  Time dependent optimization with a folding genetic algorithm , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[29]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[30]  Mitsuo Gen,et al.  A tutorial survey of job-shop scheduling problems using genetic algorithms: Part II. Hybrid , 1999 .

[31]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[32]  Leonie Kohl,et al.  Fundamental Concepts in the Design of Experiments , 2000 .

[33]  Ian C. Parmee,et al.  Use of Preferences for GA-based Multi-objective Optimisation , 1999, GECCO.

[34]  Terence C. Fogarty,et al.  Adaptive Balancing of a Bank of Sugar - Beet Presses Using a Genetic Algorithm with Variable Local Search Range , 1997 .

[35]  Peter Ross,et al.  An Immune System Approach to Scheduling in Changing Environments , 1999, GECCO.

[36]  H. Greiner Robust optical coating design with evolutionary strategies. , 1996, Applied optics.

[37]  Thomas Martinetz,et al.  Genetic Algorithms in Time-Dependent Environments , 1999, ArXiv.

[38]  Dirk V. Arnold,et al.  Evolution strategies in noisy environments- a survey of existing work , 2001 .

[39]  David E. Goldberg,et al.  Efficient Parallel Genetic Algorithms: Theory and Practice , 2000 .

[40]  Reinhard Männer,et al.  Parallel Problem Solving from Nature , 1991 .

[41]  John J. Grefenstette,et al.  Evolvability in dynamic fitness landscapes: a genetic algorithm approach , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[42]  Charles L. Karr,et al.  Adaptive process control using biologic paradigms , 1995, Proceedings Electronic Technology Directions to the Year 2000.

[43]  Phil Husbands,et al.  A Comparison of Search Techniques on a Wing-Box Optimisation Problem , 1996, PPSN.

[44]  Pratyush Sen,et al.  Directed Multiple Objective search of design spaces using Genetic Algorithms and neural networks , 1999 .

[45]  Udo Kohlmorgen,et al.  Parallel Genetic Algorithm for the Capacitated Lot-Sizing Problem , 1996 .

[46]  Gerry V. Dozier,et al.  Distributed Steady-State Neuro-Evolutionary Path Planning in Non-Stationary Environments Using Adaptive Replacement , 2000, GECCO.

[47]  G. Thompson,et al.  Algorithms for Solving Production-Scheduling Problems , 1960 .

[48]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[49]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[50]  Kathleen M. Swigger,et al.  An Analysis of Genetic-Based Pattern Tracking and Cognitive-Based Component Tracking Models of Adaptation , 1983, AAAI.

[51]  Jason M. Daida,et al.  (1+1) genetic algorithm fitness dynamics in a changing environment , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[52]  Roger L. Wainwright,et al.  Dynamic scheduling of computer tasks using genetic algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[53]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[54]  Ari P. J. Vepsalainen Priority rules for job shops with weighted tardiness costs , 1987 .

[55]  Claus O. Wilke,et al.  Evolutionary Dynamics in Time-dependent Environments , 1999 .

[56]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[57]  K. Weicker,et al.  On evolution strategy optimization in dynamic environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[58]  Thomas Bäck,et al.  Robust design of multilayer optical coatings by means of evolutionary algorithms , 1998, IEEE Trans. Evol. Comput..

[59]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[60]  Kalyanmoy Deb,et al.  Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design , 1999 .

[61]  S. Louis,et al.  Genetic Algorithms for Open Shop Scheduling and Re-scheduling , 1996 .

[62]  Z. Michalewicz,et al.  A genetic algorithm for the linear transportation problem , 1991, IEEE Trans. Syst. Man Cybern..

[63]  Ian C. Parmee,et al.  Techniques to aid global search in engineering design , 1994, IEA/AIE '94.

[64]  Christian Bierwirth,et al.  A Case Study of Operational Just-In-Time Scheduling Using Genetic Algorithms , 1995 .

[65]  Mark Wineberg,et al.  Enhancing the GA's Ability to Cope with Dynamic Environments , 2000, GECCO.

[66]  Helen D. Karatza,et al.  Dynamic Sequencing of A Multi-Processor System: A Genetic Algorithm Approach , 1993 .

[67]  Narayan Raman,et al.  The job shop tardiness problem: A decomposition approach , 1993 .

[68]  S. Tsutsui,et al.  Function optimization in nonstationary environment using steady state genetic algorithms with aging of individuals , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[69]  Kalyanmoy Deb,et al.  Self-Adaptive Genetic Algorithms with Simulated Binary Crossover , 2001, Evolutionary Computation.

[70]  David E. Goldberg,et al.  Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy , 1987, ICGA.

[71]  Brad L. Miller,et al.  Noise, sampling, and efficient genetic algorthms , 1997 .

[72]  Zbigniew Michalewicz,et al.  Searching for optima in non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[73]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[74]  D. Dasgupta Incorporating Redundancy and Gene Activation Mechanisms i n Genetic search for adapting to Non-Stationary Environments , 1995 .

[75]  L. Darrell Whitley,et al.  A Comparison of Genetic Algorithms for the Static Job Shop Scheduling Problem , 2000, PPSN.

[76]  Christian Bierwirth,et al.  Minimizing Job Tardiness: Priority Rules vs. Adaptive Scheduling , 1998 .

[77]  Erkki Mäkinen,et al.  TimGA - A Genetic Algorithm for Drawing Undirected Graphs , 1996 .

[78]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[79]  Terence C. Fogarty,et al.  Performance of a Genetic Algorithm with Variable Local Search Range Relative to Frequency of the Environmental Changes , 1998 .

[80]  M. Tjornfelt-Jensen,et al.  Robust solutions to job shop problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[81]  Jing Xiao,et al.  Adding memory to the Evolutionary Planner/Navigator , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[82]  Terence C. Fogarty,et al.  Load Balancing Application of the Genetic Algorithm in a Nonstationary Environment , 1995, Evolutionary Computing, AISB Workshop.

[83]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.