Explicit frequency control for high-quality texture-based flow visualization

In this work we propose an effective method for frequency-controlled dense flow visualization derived from a generalization of the Line Integral Convolution (LIC) technique. Our approach consists in considering the spectral properties of the dense flow visualization process as an integral operator defined in a local curvilinear coordinate system aligned with the flow. Exploring LIC from this point of view, we suggest a systematic way to design a flow visualization process with particular local spatial frequency properties of the resulting image. Our method is efficient, intuitive, and based on a long-standing model developed as a result of numerous perception studies. The method can be described as an iterative application of line integral convolution, followed by a one-dimensional Gabor filtering orthogonal to the flow. To demonstrate the utility of the technique, we generated novel adaptive multi-frequency flow visualizations, that according to our evaluation, feature a higher level of frequency control and higher quality scores than traditional approaches in texture-based flow visualization.

[1]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[2]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[3]  Colin Ware,et al.  Neural modeling of flow rendering effectiveness , 2010, ACM Trans. Appl. Percept..

[4]  Detlev Stalling,et al.  Fast texture based algorithms for vector field visualization , 1999 .

[5]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[6]  Min Chen,et al.  Visual Reconstructability as a Quality Metric for Flow Visualization , 2011, Comput. Graph. Forum.

[7]  H. C. Nothdurft Different effects from spatial frequency masking in texture segregation and texton detection tasks , 1991, Vision Research.

[8]  Daniel Weiskopf GPU-Based Interactive Visualization Techniques (Mathematics and Visualization) , 2006 .

[9]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[10]  Hans-Christian Hege,et al.  LIC on Surfaces , 1997 .

[11]  M. Porat,et al.  Localized texture processing in vision: analysis and synthesis in the Gaborian space , 1989, IEEE Transactions on Biomedical Engineering.

[12]  Daniel Weiskopf,et al.  Hierarchical Line Integration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[13]  Andreas Sundquist Dynamic Line Integral Convolution for Visualizing Streamline Evolution , 2003, IEEE Trans. Vis. Comput. Graph..

[14]  Matthew O. Ward,et al.  Measuring Data Abstraction Quality in Multiresolution Visualizations , 2006, IEEE Transactions on Visualization and Computer Graphics.

[15]  Wilfrid Lefer,et al.  Creating Evenly-Spaced Streamlines of Arbitrary Density , 1997, Visualization in Scientific Computing.

[16]  Dominikus Baur,et al.  Measuring Aesthetics for Information Visualization , 2009, 2009 13th International Conference Information Visualisation.

[17]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.

[18]  Jarke J. van Wijk,et al.  The value of visualization , 2005, VIS 05. IEEE Visualization, 2005..

[19]  Robert Michael Kirby,et al.  Quantitative comparative evaluation of 2D vector field visualization methods , 2001, Proceedings Visualization, 2001. VIS '01..

[20]  Jonathan D. Cohen,et al.  Similarity-Guided Streamline Placement with Error Evaluation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  Marc Alexa,et al.  Vector field visualization using Markov Random Field texture synthesis , 2003, VisSym.

[22]  Peter Hastreiter,et al.  Interactive exploration of volume line integral convolution based on 3D-texture mapping , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[23]  Ares Lagae,et al.  Procedural noise using sparse Gabor convolution , 2009, SIGGRAPH '09.

[24]  Tong-Yee Lee,et al.  Animating streamlines with orthogonal advancing waves , 2013, Inf. Vis..

[25]  William Knight,et al.  Using visual texture for information display , 1995, TOGS.

[26]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[27]  Robert J. Moorhead,et al.  Topology-Aware Evenly Spaced Streamline Placement , 2010, IEEE Transactions on Visualization and Computer Graphics.

[28]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[29]  Gerik Scheuermann,et al.  The State of the Art in Flow Visualization: Partition-Based Techniques , 2008, SimVis.

[30]  Jarke J. van Wijk,et al.  Image based flow visualization , 2002, ACM Trans. Graph..

[31]  Jens H. Krüger,et al.  Dense flow visualization using wave interference , 2012, 2012 IEEE Pacific Visualization Symposium.

[32]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[33]  David C. Banks,et al.  Multi-frequency noise for LIC , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[34]  Ken Brodlie,et al.  Uncertain Flow Visualization using LIC , 2009, TPCG.

[35]  Robert Michael Kirby,et al.  Comparing 2D vector field visualization methods: a user study , 2005, IEEE Transactions on Visualization and Computer Graphics.

[36]  F K Chua,et al.  The processing of spatial frequency and orientation information , 1990, Perception & psychophysics.

[37]  Fabrice Neyret,et al.  Lagrangian Texture Advection: Preserving both Spectrum and Velocity Field , 2011, IEEE Transactions on Visualization and Computer Graphics.

[38]  David L. Kao,et al.  Enhanced line integral convolution with flow feature detection , 1997, Electronic Imaging.

[39]  Chaomei Chen Measuring the quality of network visualization , 2005, Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '05).

[40]  Michael Burch,et al.  Spectral Analysis of Higher-Order and BFECC Texture Advection , 2012, VMV.

[41]  Daniel Weiskopf,et al.  Texture-based visualization of uncertainty in flow fields , 2005, VIS 05. IEEE Visualization, 2005..

[42]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[43]  Daniel Weiskopf Iterative Twofold Line Integral Convolution for Texture-Based Vector Field Visualization , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[44]  Wilfrid Lefer,et al.  Unsteady Flow Visualization by Animating Evenly‐Spaced Streamlines , 2000, Comput. Graph. Forum.

[45]  Lisa K. Forssell Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.

[46]  Victoria Interrante,et al.  Effectively visualizing multi-valued flow data using color and texture , 2003, IEEE Visualization, 2003. VIS 2003..

[47]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[48]  Jens H. Krüger,et al.  A Metric for the Evaluation of Dense Vector Field Visualizations , 2013, IEEE Transactions on Visualization and Computer Graphics.

[49]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.