Exploiting multilevel Toeplitz structures in high dimensional nonlocal diffusion

We present a finite element implementation for the steady-state nonlocal Dirichlet problem with homogeneous volume constraints. Here, the nonlocal diffusion operator is defined as integral operator characterized by a certain kernel function. We assume that the domain is an arbitrary d-dimensional hyperrectangle and the kernel is translation and reflection invariant. Under these assumptions, we carefully analyze the structure of the stiffness matrix resulting from a continuous Galerkin method with $$Q_1$$Q1 elements and exploit this structure in order to cope with the curse of dimensionality associated to nonlocal problems. For the purpose of illustration we choose a particular kernel, which is related to space-fractional diffusion and present numerical results in 1d, 2d and for the first time also in 3d.

[1]  Max Gunzburger,et al.  Regularity and approximation analyses of nonlocal variational equality and inequality problems , 2018, 1804.10282.

[2]  Kun Zhou,et al.  Mathematical and Numerical Analysis of Linear Peridynamic Models with Nonlocal Boundary Conditions , 2010, SIAM J. Numer. Anal..

[3]  S. Serra-Capizzano,et al.  Toeplitz matrices : Spectral properties and preconditioning in the CG method , 2014 .

[4]  Hong Wang,et al.  A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation , 2013, J. Comput. Phys..

[5]  Gabriel Acosta,et al.  A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations , 2015, SIAM J. Numer. Anal..

[6]  Laurent D. Cohen,et al.  Non-local Regularization of Inverse Problems , 2008, ECCV.

[7]  Mikhail Belkin,et al.  On Learning with Integral Operators , 2010, J. Mach. Learn. Res..

[8]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[9]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[10]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[11]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[12]  Stefano Serra Capizzano,et al.  Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..

[13]  Gabriel Acosta,et al.  A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian , 2016, Comput. Math. Appl..

[14]  Mihai Anitescu,et al.  A parallel linear solver for multilevel Toeplitz systems with possibly several right-hand sides , 2014, Parallel Comput..

[15]  M. Gunzburger,et al.  Regularity analyses and approximation of nonlocal variational equality and inequality problems , 2019, Journal of Mathematical Analysis and Applications.

[16]  Maxim A. Olshanskii,et al.  Iterative Methods for Linear Systems - Theory and Applications , 2014 .

[17]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[18]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[19]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[20]  Marta D'Elia,et al.  The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..

[21]  Lek-Heng Lim,et al.  Algorithms for structured matrix-vector product of optimal bilinear complexity , 2016, 2016 IEEE Information Theory Workshop (ITW).

[22]  Hong Wang,et al.  A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..

[23]  Richard F. Bass,et al.  Symmetric jump processes: Localization, heat kernels and convergence , 2008, 0803.3164.

[24]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[25]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[26]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[27]  M. T. Barlow,et al.  Non-local dirichlet forms and symmetric jump processes , 2006 .

[28]  Q. Du,et al.  MATHEMATICAL ANALYSIS FOR THE PERIDYNAMIC NONLOCAL CONTINUUM THEORY , 2011 .

[29]  Weihua Deng,et al.  Convergence proof for the multigrid method of the nonlocal model , 2016 .

[30]  E. Tyrtyshnikov,et al.  Tensor properties of multilevel Toeplitz and related matrices , 2006 .