Computational modeling and automation techniques to study biomolecular dynamics

Shantanu Sharma: Computational modeling and automation techniques to study biomolecular dynamics. (Under the guidance of Prof. Nikolay V. Dokholyan.) Physically-principled computational modeling and automation techniques have emerged as potent methodologies in exploring biomolecular dynamics and generating experimentallytestable hypotheses. In this dissertation, we develop a set of simulation automation techniques and present results on case studies of biomolecular simulation. Nucleosomes form the fundamental building blocks of eukaryotic chromatin. We use multiscale modeling and discrete molecular dynamics simulations to investigate the dynamics of the Xenopus laevis nucleosome core particle, the fundamental unit of chromatin. Histone tails are flexible and are poorly resolved in X-ray crystal structures. We probe how molecular-level dynamics of the histone tails, core histones and associated DNA mediate chromatin stability at the scale of singlenucleosomes. Based on the positional fluctuations of core histone residues, we postulate cold sites, a set of core histone residues essential for stabilizing the Xenopus laevis nucleosome core particle. We explore changes in the biophysical stability of mono-nucleosomes by designing mutations in core histones and using Medusa, a high-throughput computational technique to explore changes in mononucleosomal stability resulting from point mutations. The presence of centromere-specific H3 variant histone (Cse4) in centromere-specific nucleosomes defines the kinetochore locus. However, structural details of the centromere-specific nucleosomes remain to be completely understood. We construct a homology model of the Saccharomyces cerevisiae centromeric nucleosome and generate a biophysically-principled C-loop model for elongation of Saccharomyces cerevisiae kinetochore. We present simulation automation techniques by means of two web-based servers: iFold (http://iFold.dokhlab.org) and iFoldRNA (http://iFoldRNA.dokhlab.org). iFold enables automated simulations of protein folding, unfolding using discrete molecular dynamics. iFoldRNA enables ab initio RNA structure prediction using replica-exchange discrete molecular dynamics simulations. We also demonstrate

[1]  A. Hüttenhofer,et al.  The principles of guiding by RNA: chimeric RNA–protein enzymes , 2006, Nature Reviews Genetics.

[2]  H. Stanley,et al.  Identifying importance of amino acids for protein folding from crystal structures. , 2003, Methods in enzymology.

[3]  D. Reinberg,et al.  Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. , 2001, Genes & development.

[4]  D. Stauffer Monte Carlo simulations in statistical physics , 1988 .

[5]  H. Stanley,et al.  Molecular dynamics simulation of amyloid beta dimer formation. , 2004, Biophysical journal.

[6]  D. Thirumalai,et al.  Pulling-speed-dependent force-extension profiles for semiflexible chains. , 2004, Biophysical journal.

[7]  Shuangye Yin,et al.  Eris: an automated estimator of protein stability , 2007, Nature Methods.

[8]  S. Lippard,et al.  Mutagenicity and genotoxicity of the major DNA adduct of the antitumor drug cis-diamminedichloroplatinum(II). , 1993, Biochemistry.

[9]  K. Luger,et al.  H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. , 2004, Molecular cell.

[10]  Luigi G. Marzilli,et al.  A Molecular Mechanics AMBER-Type Force Field for Modeling Platinum Complexes of Guanine Derivatives , 1994 .

[11]  Michael L. Klein,et al.  Coarse grain models and the computer simulation of soft materials , 2004 .

[12]  C. Allis,et al.  In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. , 1999, Methods.

[13]  S. Chaney,et al.  The Efficiency and Fidelity of Translesion Synthesis past Cisplatin and Oxaliplatin GpG Adducts by Human DNA Polymerase β* , 2000, The Journal of Biological Chemistry.

[14]  H. Schiessel The nucleosome: A transparent, slippery, sticky and yet stable DNA-protein complex , 2006, The European physical journal. E, Soft matter.

[15]  K. V. van Holde,et al.  Salt-induced release of DNA from nucleosome core particles. , 1989, Biochemistry.

[16]  J. Hayes,et al.  Probing core histone tail-DNA interactions in a model dinucleosome system. , 2004, Methods in enzymology.

[17]  Wei Yang,et al.  Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA , 2000, Nature.

[18]  S. Berger,et al.  Histone modifications in transcriptional regulation. , 2002, Current opinion in genetics & development.

[19]  K. Weeks,et al.  Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution , 2006, Nature Protocols.

[20]  A. Shilatifard,et al.  A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation , 2008, Nature Structural &Molecular Biology.

[21]  S. Lippard,et al.  DNA sequence context and protein composition modulate HMG-domain protein recognition of cisplatin-modified DNA. , 1997, Biochemistry.

[22]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[23]  F. Ding,et al.  Scaling behavior and structure of denatured proteins. , 2005, Structure.

[24]  Jun-ichi Takimoto,et al.  A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions , 2002 .

[25]  Sean R Eddy,et al.  How do RNA folding algorithms work? , 2004, Nature Biotechnology.

[26]  D. Durand,et al.  Phase diagram of nucleosome core particles. , 2003, Journal of molecular biology.

[27]  H. Stanley,et al.  Molecular Dynamics Simulation of Amyloid β Dimer Formation , 2004, physics/0403040.

[28]  C. Allis,et al.  Histone and chromatin cross-talk. , 2003, Current opinion in cell biology.

[29]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[30]  S. Lippard,et al.  HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Koshland,et al.  Cse4p Is a Component of the Core Centromere of Saccharomyces cerevisiae , 1998, Cell.

[32]  Gary H Karpen,et al.  Conserved organization of centromeric chromatin in flies and humans. , 2002, Developmental cell.

[33]  C. Boland,et al.  Loss of DNA mismatch repair in acquired resistance to cisplatin. , 1996, Cancer research.

[34]  Feng Ding,et al.  Protein folding: then and now. , 2008, Archives of biochemistry and biophysics.

[35]  A. V. D. Van Der Zee,et al.  hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents , 1997, Oncogene.

[36]  B. Teicher,et al.  Spectrum of cis‐diamminedichloroplatinum(II)‐induced mutations in a shuttle vector propagated in human cells , 1991, Molecular carcinogenesis.

[37]  Lance G. Laing,et al.  Thermodynamics of RNA folding in a conserved ribosomal RNA domain. , 1994, Journal of molecular biology.

[38]  Wojciech Kasprzak,et al.  Bridging the gap in RNA structure prediction. , 2007, Current opinion in structural biology.

[39]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  D. Draper,et al.  Thermodynamics of folding a pseudoknotted mRNA fragment. , 1994, Journal of molecular biology.

[41]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[42]  S. Lippard,et al.  2.4 A crystal structure of an oxaliplatin 1,2-d(GpG) intrastrand cross-link in a DNA dodecamer duplex. , 2001, Inorganic chemistry.

[43]  Feng Ding,et al.  Folding of Cu, Zn superoxide dismutase and familial amyotrophic lateral sclerosis. , 2003, Journal of molecular biology.

[44]  D. Albertson,et al.  Him-10 Is Required for Kinetochore Structure and Function on Caenorhabditis elegans Holocentric Chromosomes , 2001, The Journal of cell biology.

[45]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[46]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[47]  Eric J. Sorin,et al.  Does native state topology determine the RNA folding mechanism? , 2004, Journal of molecular biology.

[48]  Michael Feig,et al.  MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. , 2004, Journal of molecular graphics & modelling.

[49]  David H Mathews,et al.  Revolutions in RNA secondary structure prediction. , 2006, Journal of molecular biology.

[50]  C. Allis,et al.  Signaling to Chromatin through Histone Modifications , 2000, Cell.

[51]  Ignacio Tinoco,et al.  Quantifying the energetic interplay of RNA tertiary and secondary structure interactions. , 1999, RNA.

[52]  S. Lippard,et al.  The HMG-domain protein Ixr1 blocks excision repair of cisplatin-DNA adducts in yeast. , 1996, Mutation research.

[53]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[54]  H. Stanley,et al.  Direct molecular dynamics observation of protein folding transition state ensemble. , 2002, Biophysical journal.

[55]  K. Keith,et al.  CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere dna around a cse4p variant nucleosome. , 2000, Genetics.

[56]  C. Macleod,et al.  In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. , 1997, Cancer research.

[57]  Nikolay V Dokholyan,et al.  Studies of folding and misfolding using simplified models. , 2006, Current opinion in structural biology.

[58]  Kerry Bloom,et al.  Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. , 2005, Molecular biology of the cell.

[59]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[60]  S. Henikoff,et al.  Histone H3 variants specify modes of chromatin assembly , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C. Pabo,et al.  Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins , 1999, Nature.

[62]  Feng Ding,et al.  Multiple folding pathways of the SH3 domain. , 2003, Biophysical journal.

[63]  V. de Lorenzo,et al.  Clues and consequences of DNA bending in transcription. , 1997, Annual review of microbiology.

[64]  K. V. van Holde,et al.  Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Timm,et al.  Asymmetries in the nucleosome core particle at 2.5 A resolution. , 2000, Acta crystallographica. Section D, Biological crystallography.

[66]  Jerry Workman,et al.  Persistent Interactions of Core Histone Tails with Nucleosomal DNA following Acetylation and Transcription Factor Binding , 1998, Molecular and Cellular Biology.

[67]  Eric D. Scheeff,et al.  Molecular modeling of the intrastrand guanine-guanine DNA adducts produced by cisplatin and oxaliplatin. , 1999, Molecular pharmacology.

[68]  Dominique Durand,et al.  Salt-induced conformation and interaction changes of nucleosome core particles. , 2002, Biophysical journal.

[69]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[70]  J. Essigmann,et al.  Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. , 1998, Biochemistry.

[71]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[72]  P. Hall,et al.  Risk of second malignant neoplasms among long-term survivors of testicular cancer. , 1997, Journal of the National Cancer Institute.

[73]  Nicholas M. Luscombe,et al.  Amino acid?base interactions: a three-dimensional analysis of protein?DNA interactions at an atomic level , 2001, Nucleic Acids Res..

[74]  Irene M. Baskerville-Abraham,et al.  Solution structures of a DNA dodecamer duplex with and without a cisplatin 1,2-d(GG) intrastrand cross-link: comparison with the same DNA duplex containing an oxaliplatin 1,2-d(GG) intrastrand cross-link. , 2007, Biochemistry.

[75]  R. Fuchs,et al.  Spectrum of cisplatin-induced mutations in Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[76]  E. Shakhnovich,et al.  Phase diagram for unzipping DNA with long-range interactions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  K. V. van Holde,et al.  Chromatin fiber structure: morphology, molecular determinants, structural transitions. , 1998, Biophysical journal.

[78]  J. McIntosh,et al.  Force production by disassembling microtubules , 2005, Nature.

[79]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[80]  Efficiency of Extension of Mismatched Primer Termini across from Cisplatin and Oxaliplatin Adducts by Human DNA Polymerases β and η in Vitro , 2003 .

[81]  Jonathan Widom,et al.  Spontaneous sharp bending of double-stranded DNA. , 2004, Molecular cell.

[82]  T. Richmond,et al.  The histone tails of the nucleosome. , 1998, Current opinion in genetics & development.

[83]  S. Lippard,et al.  Crystal Structure of the Anticancer Drug Cisplatin Bound to Duplex DNA , 1996 .

[84]  W. B. Arendall,et al.  RNA backbone is rotameric , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  T. Lange,et al.  Homologous Recombination Generates T-Loop-Sized Deletions at Human Telomeres , 2004, Cell.

[86]  D Gautheret,et al.  Reproducing the three-dimensional structure of a tRNA molecule from structural constraints. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[87]  C. Napier,et al.  Sequence- and region-specificity of oxaliplatin adducts in naked and cellular DNA. , 1998, Molecular pharmacology.

[88]  Robert E. Johnson,et al.  Mismatch Extension Ability of Yeast and Human DNA Polymerase η* , 2001, The Journal of Biological Chemistry.

[89]  M. Record,et al.  Specific and non-specific interactions of integration host factor with DNA: thermodynamic evidence for disruption of multiple IHF surface salt-bridges coupled to DNA binding. , 2001, Journal of molecular biology.

[90]  Feng Ding,et al.  iFold: a platform for interactive folding simulations of proteins , 2006, Bioinform..

[91]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[92]  J. Hayes,et al.  Intra- and Inter-nucleosomal Protein-DNA Interactions of the Core Histone Tail Domains in a Model System* , 2003, Journal of Biological Chemistry.

[93]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[94]  R. Nicklas Measurements of the force produced by the mitotic spindle in anaphase , 1983, The Journal of cell biology.

[95]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[96]  T. Bishop,et al.  Mechanical Model of the Nucleosome and Chromatin , 2002, Journal of biomolecular structure & dynamics.

[97]  J. Widom,et al.  Role of DNA sequence in nucleosome stability and dynamics , 2001, Quarterly Reviews of Biophysics.

[98]  J. Widom,et al.  Nucleosomes facilitate their own invasion , 2004, Nature Structural &Molecular Biology.

[99]  J. Widom,et al.  Measurement of histone-DNA interaction free energy in nucleosomes. , 2004, Methods.

[100]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[101]  Feng Ding,et al.  Simple but predictive protein models. , 2005, Trends in biotechnology.

[102]  M. Grunstein Histone acetylation in chromatin structure and transcription , 1997, Nature.

[103]  Henriqueta Louro,et al.  Comparative analysis of the mutagenic activity of oxaliplatin and cisplatin in the Hprt gene of CHO cells , 2005, Environmental and molecular mutagenesis.

[104]  F. Major,et al.  The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data , 2008, Nature.

[105]  Kevin M Weeks,et al.  RNA SHAPE chemistry reveals nonhierarchical interactions dominate equilibrium structural transitions in tRNA(Asp) transcripts. , 2005, Journal of the American Chemical Society.

[106]  Janet M Thornton,et al.  Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity. , 2002, Journal of molecular biology.

[107]  M.Mitchell Smith,et al.  Histone octamer function in vivo: mutations in the dimer–tetramer interfaces disrupt both gene activation and repression , 1997, The EMBO journal.

[108]  R. Allshire,et al.  The role of heterochromatin in centromere function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[109]  H. Stanley,et al.  Discrete molecular dynamics studies of the folding of a protein-like model. , 1998, Folding & design.

[110]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[111]  V. Zhurkin,et al.  DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[112]  J. Haber,et al.  Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events , 1994, Molecular and cellular biology.

[113]  G. Bocchinfuso,et al.  Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. , 1999, Journal of molecular biology.

[114]  L. Marzilli,et al.  Relationship of solution and protein-bound structures of DNA duplexes with the major intrastrand cross-link lesions formed on cisplatin binding to DNA. , 2001, Journal of the American Chemical Society.

[115]  F. Hanaoka,et al.  Mechanisms of accurate translesion synthesis by human DNA polymerase η , 2000, The EMBO journal.

[116]  M. Levitt,et al.  Computer simulation of protein folding , 1975, Nature.

[117]  W. Bickmore,et al.  Human diseases with underlying defects in chromatin structure and modification. , 2001, Human molecular genetics.

[118]  T. Cheatham,et al.  Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise * , 2000, Biopolymers.

[119]  Anastassis Perrakis,et al.  The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch , 2000, Nature.

[120]  Maryna Kapustina,et al.  Structure alignment via Delaunay tetrahedralization , 2005, Proteins.

[121]  J. Hayes,et al.  Salt-dependent Intra- and Internucleosomal Interactions of the H3 Tail Domain in a Model Oligonucleosomal Array* , 2005, Journal of Biological Chemistry.

[122]  O. Stemmann,et al.  Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[123]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[124]  S. Chaney,et al.  Effect of the diaminocyclohexane carrier ligand on platinum adduct formation, repair, and lethality. , 1990, Biochemistry.

[125]  G Lapalme,et al.  The combination of symbolic and numerical computation for three-dimensional modeling of RNA. , 1991, Science.

[126]  Seth M. Cohen,et al.  HMG-domain protein recognition of cisplatin 1,2-intrastrand d(GpG) cross-links in purine-rich sequence contexts. , 2000, Biochemistry.

[127]  Karolin Luger,et al.  Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions , 2001, The EMBO journal.

[128]  S. Lippard,et al.  NMR solution structure of a DNA dodecamer duplex containing a cis-diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. , 1998, Biochemistry.

[129]  Feng Ding,et al.  Direct Observation of Protein Folding, Aggregation, and a Prion-like Conformational Conversion* , 2005, Journal of Biological Chemistry.

[130]  T. Kunkel,et al.  The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. , 1998, Cancer research.

[131]  M. Karplus,et al.  How does a protein fold? , 1994, Nature.

[132]  J. Borreguero,et al.  Mechanism for the α‐helix to β‐hairpin transition , 2003, Proteins.

[133]  J. Ausió,et al.  Effects of Histone Acetylation on the Solubility and Folding of the Chromatin Fiber* , 2001, The Journal of Biological Chemistry.

[134]  T. Bishop,et al.  Molecular Dynamics Simulations of a Nucleosome and Free DNA , 2004, Journal of biomolecular structure & dynamics.

[135]  Richard Lavery,et al.  Force field for platinum binding to adenine , 1993, J. Comput. Chem..

[136]  H. Stanley,et al.  Discrete molecular dynamics simulations of peptide aggregation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[137]  C. W. Hilbers,et al.  NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. , 1998, Science.

[138]  Peter K Sorger,et al.  Molecular organization of the Ndc80 complex, an essential kinetochore component. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[139]  R. Kornberg Chromatin structure: a repeating unit of histones and DNA. , 1974, Science.

[140]  R. Kornberg,et al.  Twenty-Five Years of the Nucleosome, Fundamental Particle of the Eukaryote Chromosome , 1999, Cell.

[141]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[142]  E. Bradbury,et al.  Rearrangement of the histone H2A C-terminal domain in the nucleosome. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[143]  K. V. van Holde,et al.  Use of selectively trypsinized nucleosome core particles to analyze the role of the histone "tails" in the stabilization of the nucleosome. , 1989, Journal of molecular biology.

[144]  A. Wang,et al.  Structure and isomerization of an intrastrand cisplatin-cross-linked octamer DNA duplex by NMR analysis. , 1995, Biochemistry.

[145]  Alexander Varshavsky,et al.  Mapping proteinDNA interactions in vivo with formaldehyde: Evidence that histone H4 is retained on a highly transcribed gene , 1988, Cell.

[146]  F. Ding,et al.  New insights into FAK signaling and localization based on detection of a FAT domain folding intermediate. , 2004, Structure.

[147]  B. Viollet,et al.  TATA Binding Protein Discriminates between Different Lesions on DNA, Resulting in a Transcription Decrease , 1998, Molecular and Cellular Biology.

[148]  D. W. Staple,et al.  Open access, freely available online Primer Pseudoknots: RNA Structures with Diverse Functions , 2022 .

[149]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[150]  D. Thirumalai,et al.  Stretching DNA: Role of electrostatic interactions , 1998, cond-mat/9810104.

[151]  P. Sorger,et al.  The yeast DASH complex forms closed rings on microtubules , 2005, Nature Structural &Molecular Biology.

[152]  Adam P. Silverman,et al.  Effects of Spectator Ligands on the Specific Recognition of Intrastrand Platinum-DNA Cross-links by High Mobility Group Box and TATA-binding Proteins* 210 , 2001, The Journal of Biological Chemistry.

[153]  D. Koshland,et al.  Rings, bracelet or snaps: fashionable alternatives for Smc complexes , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[154]  J. Kozelka,et al.  Unrestrained 5 ns molecular dynamics simulation of a cisplatin-DNA 1,2-GG adduct provides a rationale for the NMR features and reveals increased conformational flexibility at the platinum binding site. , 2001, Journal of molecular biology.

[155]  Nancy Kleckner,et al.  Cohesins Bind to Preferential Sites along Yeast Chromosome III, with Differential Regulation along Arms versus the Centric Region , 1999, Cell.

[156]  X. Zhuang Single-molecule RNA science. , 2005, Annual review of biophysics and biomolecular structure.

[157]  I. Tinoco,et al.  How RNA folds. , 1999, Journal of molecular biology.

[158]  T. Richmond,et al.  The structure of DNA in the nucleosome core , 2003, Nature.

[159]  D. K. Treiber,et al.  Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[160]  J. Turchi,et al.  Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts. , 1999, Biochemistry.

[161]  T Schlick,et al.  Computational modeling predicts the structure and dynamics of chromatin fiber. , 2001, Structure.

[162]  I. Oohara,et al.  Spectroscopic studies on histone-DNA interactions. I. The interaction of histone (H2A, H2B) dimer with DNA: DNA sequence dependence. , 1987, Journal of molecular biology.

[163]  J. Doudna,et al.  Ribozyme structures and mechanisms. , 2000, Annual review of biochemistry.

[164]  S. Buldyrev,et al.  Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. , 2004, Biophysical journal.

[165]  S. Chaney,et al.  The Role of DNA Polymerase η in Translesion Synthesis Past Platinum–DNA Adducts in Human Fibroblasts , 2004, Cancer Research.

[166]  S. Henikoff,et al.  The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. , 2002, Molecular cell.

[167]  J. Hoffmann,et al.  HMG1 protein inhibits the translesion synthesis of the major DNA cisplatin adduct by cell extracts. , 1997, Journal of molecular biology.

[168]  Peter A. Kollman,et al.  Molecular Dynamics Simulation of Nucleic Acids , 2001 .

[169]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[170]  H. Stanley,et al.  Molecular dynamics simulation of the SH3 domain aggregation suggests a generic amyloidogenesis mechanism. , 2002, Journal of molecular biology.

[171]  C. Bustamante,et al.  Rapid spontaneous accessibility of nucleosomal DNA , 2005, Nature Structural &Molecular Biology.

[172]  J. Ausió,et al.  Acetylation Increases the α-Helical Content of the Histone Tails of the Nucleosome* , 2000, The Journal of Biological Chemistry.

[173]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[174]  Feng Ding,et al.  Multiscale modeling of nucleosome dynamics. , 2007, Biophysical journal.

[175]  A. Eastman,et al.  Characterization of adducts produced in DNA by isomeric 1,2-diaminocyclohexaneplatinum(II) complexes. , 1989, Chemico-biological interactions.

[176]  J. Tytell,et al.  Structure, function, and regulation of budding yeast kinetochores. , 2003, Annual review of cell and developmental biology.

[177]  C. Bustamante,et al.  Pulling chromatin fibers: computer simulations of direct physical micromanipulations. , 2000, Journal of molecular biology.

[178]  M. Karplus,et al.  Folding of a model three-helix bundle protein: a thermodynamic and kinetic analysis. , 1999, Journal of molecular biology.

[179]  E. Nogales,et al.  Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. , 2005, Molecular cell.

[180]  M. Karplus,et al.  Folding thermodynamics of a model three-helix-bundle protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[181]  Jody M. Havener,et al.  NMR solution structure of an oxaliplatin 1,2-d(GG) intrastrand cross-link in a DNA dodecamer duplex. , 2004, Journal of molecular biology.

[182]  D. Baker,et al.  Automated de novo prediction of native-like RNA tertiary structures , 2007, Proceedings of the National Academy of Sciences.

[183]  A. Khokhlov,et al.  Some problems of the statistical physics of polymer chains with volume interaction , 1978 .

[184]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[185]  F. Hanaoka,et al.  Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. , 2000, Biochemistry.

[186]  S. Islam,et al.  Redefinition of the cleavage sites of DNase I on the nucleosome core particle. , 2004, Journal of molecular biology.

[187]  Song Cao,et al.  Predicting RNA pseudoknot folding thermodynamics , 2006, Nucleic acids research.

[188]  Feng Ding,et al.  Correction: Emergence of Protein Fold Families through Rational Design , 2006, PLoS Comput. Biol..

[189]  T. Richmond,et al.  Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. , 2002, Journal of molecular biology.

[190]  T. Schlick,et al.  Electrostatic mechanism of nucleosomal array folding revealed by computer simulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[191]  B. Turner,et al.  Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase , 1998, The EMBO journal.

[192]  K. Bloom,et al.  Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes , 1982, Cell.

[193]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[194]  S. Aebi,et al.  The role of DNA mismatch repair in platinum drug resistance. , 1996, Cancer research.

[195]  Steven Henikoff,et al.  Phylogenomics of the nucleosome , 2003, Nature Structural Biology.

[196]  R. Dickerson,et al.  DNA bending: the prevalence of kinkiness and the virtues of normality. , 1998, Nucleic acids research.

[197]  N. Dokholyan,et al.  The path of DNA in the kinetochore , 2006, Current Biology.

[198]  M. Greene,et al.  Is cisplatin a human carcinogen? , 1992, Journal of the National Cancer Institute.

[199]  R. Zinkowski,et al.  The centromere-kinetochore complex: a repeat subunit model , 1991, The Journal of cell biology.

[200]  Kerry Bloom,et al.  Budding Yeast Chromosome Structure and Dynamics during Mitosis , 2001, The Journal of cell biology.

[201]  I. Oohara,et al.  Spectroscopic studies on histone-DNA interactions. II. Three transitions in nucleosomes resolved by salt-titration. , 1987, Journal of molecular biology.

[202]  M. Karplus,et al.  Evaluation of comparative protein modeling by MODELLER , 1995, Proteins.

[203]  K. V. van Holde,et al.  What determines the folding of the chromatin fiber? , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[204]  L. J. Maher,et al.  Electrostatic mechanisms of DNA deformation. , 2000, Annual review of biophysics and biomolecular structure.

[205]  Feng Ding,et al.  Topological determinants of protein domain swapping. , 2006, Structure.

[206]  Christopher M Wood,et al.  High-resolution structure of the native histone octamer. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[207]  B. Howard,et al.  The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases , 1996, Cell.

[208]  T. Kuo,et al.  One-step transformation of yeast in stationary phase , 2004, Current Genetics.

[209]  P. O’Farrell,et al.  Progression of the cell cycle through mitosis leads to abortion of nascent transcripts , 1991, Cell.

[210]  J. Workman,et al.  Alteration of nucleosome structure as a mechanism of transcriptional regulation. , 1998, Annual review of biochemistry.

[211]  F. Ding,et al.  Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. , 2008, RNA.