Determination of Phycocyanin from Space - A Bibliometric Analysis

[1]  Mary Anne Evans,et al.  Internal loading of phosphorus in western Lake Erie , 2016 .

[2]  Colin S. Reynolds,et al.  Cyanobacterial Water-Blooms , 1987 .

[3]  Kaishan Song,et al.  A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. , 2012, The Science of the total environment.

[4]  P. J. Ashton,et al.  Seasonality in Southern Hemisphere freshwater phytoplankton assemblages , 1985, Hydrobiologia.

[5]  Adam Krezel,et al.  Empirical Model for Phycocyanin Concentration Estimation as an Indicator of Cyanobacterial Bloom in the Optically Complex Coastal Waters of the Baltic Sea , 2016, Remote. Sens..

[6]  Peter D. Hunter,et al.  Spectral discrimination of phytoplankton colour groups: The effect of suspended particulate matter and sensor spectral resolution , 2008 .

[7]  Antonio Ruiz-Verdú,et al.  An evaluation of algorithms for the remote sensing of cyanobacterial biomass , 2008 .

[8]  Kaishan Song,et al.  A Four-Band Semi-Analytical Model for Estimating Phycocyanin in Inland Waters From Simulated MERIS and OLCI Data , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Daniel Odermatt,et al.  Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters , 2015 .

[10]  Timothy W Davis,et al.  Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. , 2016, Harmful algae.

[11]  Ronghua Ma,et al.  Comparison of different semi-empirical algorithms to estimate chlorophyll-a concentration in inland lake water , 2010, Environmental monitoring and assessment.

[12]  GEORGE FRANCIS,et al.  Poisonous Australian Lake , 1878, Nature.

[13]  Henry G. Small,et al.  Co-citation in the scientific literature: A new measure of the relationship between two documents , 1973, J. Am. Soc. Inf. Sci..

[14]  Lin Li,et al.  Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin , 2008 .

[15]  Bo Yang,et al.  Comparison of Satellite Reflectance Algorithms for Estimating Phycocyanin Values and Cyanobacterial Total Biovolume in a Temperate Reservoir Using Coincident Hyperspectral Aircraft Imagery and Dense Coincident Surface Observations , 2017, Remote. Sens..

[16]  H. Gons,et al.  Optical teledetection of chlorophyll a in turbid inland waters , 1999 .

[17]  Stefan G. H. Simis,et al.  Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water , 2005 .

[18]  Ronghua Ma,et al.  Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China , 2012 .

[19]  D. Mishra,et al.  Estimation of cyanobacterial pigments in a freshwater lake using OCM satellite data , 2011 .

[20]  Leslie A. Morrissey,et al.  Mapping cyanobacterial blooms in Lake Champlain's Missisquoi Bay using QuickBird and MERIS satellite data , 2012 .

[21]  Kaishan Song,et al.  Remote sensing of freshwater cyanobacteria: An extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin , 2015 .

[22]  Andrew N Tyler,et al.  Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria. , 2009, Environmental science & technology.

[23]  D. Hadjimitsis,et al.  Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data , 2009, Environmental monitoring and assessment.

[24]  Jay Gao,et al.  Hyperspectral Remote Sensing of the Pigment C-Phycocyanin in Turbid Inland Waters, Based on Optical Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Igor Ogashawara,et al.  A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters , 2013, Remote. Sens..

[26]  Tiit Kutser,et al.  Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea , 2006 .

[27]  Sachidananda Mishra,et al.  A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms , 2014 .

[28]  Wayne W. Carmichael,et al.  Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs” , 2001 .

[29]  Igor Ogashawara,et al.  Cyanobacteria detection in Guarapiranga Reservoir (São Paulo State, Brazil) using Landsat TM and ETM+ images , 2014 .

[30]  B. Matsushita,et al.  Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM + shortwave infrared bands , 2015 .

[31]  Ronghua Ma,et al.  A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations , 2014 .

[32]  H. Paerl,et al.  Blooms Like It Hot , 2008, Science.

[33]  B. Qin,et al.  Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges. , 2019, Science bulletin.

[34]  Craig S. Tucker,et al.  Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach , 2013 .

[35]  Steven C. Chapra,et al.  Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment. , 2017, Environmental science & technology.

[36]  Lin Li,et al.  Using hyperspectral remote sensing to estimate chlorophyll‐a and phycocyanin in a mesotrophic reservoir , 2010 .

[37]  Chaomei Chen,et al.  Searching for intellectual turning points: Progressive knowledge domain visualization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Deepak R. Mishra,et al.  A Novel Algorithm for Predicting Phycocyanin Concentrations in Cyanobacteria: A Proximal Hyperspectral Remote Sensing Approach , 2009, Remote. Sens..

[39]  Peter D. Hunter,et al.  Optimal Cyanobacterial Pigment Retrieval from Ocean Colour Sensors in a Highly Turbid, Optically Complex Lake , 2019, Remote. Sens..

[40]  R. Vincent,et al.  Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie , 2004 .

[41]  Yong Zha,et al.  Remote sensing of phycocyanin pigment in highly turbid inland waters in Lake Taihu, China , 2011 .

[42]  Yaner Yan,et al.  Phycocyanin concentration retrieval in inland waters: A comparative review of the remote sensing techniques and algorithms , 2018, Journal of Great Lakes Research.

[43]  R. P. Stumpf,et al.  Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes , 2008 .

[44]  Peter D. Hunter,et al.  Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes , 2010 .