Christoffel transformations for multivariate orthogonal polynomials

Abstract Polynomial perturbations of real multivariate measures are discussed and corresponding Christoffel type formulas are found. The 1D Christoffel formula is extended to the multidimensional realm: multivariate orthogonal polynomials are expressed in terms of last quasi-determinants and sample matrices. The coefficients of these matrices are the original orthogonal polynomials evaluated at a set of nodes, which is supposed to be poised. A discussion for the existence of poised sets is given in terms of algebraic hypersurfaces in the complex affine space. Two examples of irreducible perturbations of total degree 1 and 2, for the bivariate product Legendre orthogonal polynomials, are discussed in detail.

[1]  Luther Pfahler Eisenhart,et al.  Transformations of surfaces , 1934, The Mathematical Gazette.

[2]  V. Matveev,et al.  Differential-difference evolution equations. II (Darboux transformation for the Toda lattice) , 1979 .

[3]  P. Moerbeke,et al.  Vertex Operator Solutions to the Discrete KP-Hierarchy , 1999, solv-int/9912014.

[4]  Yuan Xu Recurrence formulas for multivariate orthogonal polynomials , 1994 .

[5]  P. Olver On Multivariate Interpolation , 2006 .

[6]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[7]  E. B. Christoffel,et al.  Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .

[8]  Manuel Mañas,et al.  The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems , 2009, 0911.0941.

[9]  A. Heyting,et al.  Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nichtkommutativer Multiplikation , 1928 .

[10]  Manuel Mañas,et al.  Dressing methods for geometric nets: II. Orthogonal and Egorov nets , 2000 .

[11]  Yuan Xu Multivariate orthogonal polynomials and operator theory , 1994 .

[12]  Gangjoon Yoon,et al.  DARBOUX TRANSFORMS AND ORTHOGONAL POLYNOMIALS , 2002 .

[13]  J. McGregor,et al.  Linear Growth Models with Many Types and Multidimensional Hahn Polynomials , 1975 .

[14]  The spectrum of coupled random matrices , 1999, hep-th/9907213.

[15]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[16]  Darboux transforms on band matrices, weights and associated polynomials , 2000, nlin/0010048.

[17]  C. A. Fernández,et al.  On the Christoffel–Darboux formula for generalized matrix orthogonal polynomials , 2014 .

[18]  Manuel Mañas,et al.  The multicomponent 2D Toda hierarchy: dispersionless limit , 2008, 0810.2427.

[19]  Manuel Mañas,et al.  Dressing methods for geometric nets: I. Conjugate nets , 2000 .

[20]  E. Haynsworth Reduction of a matrix using properties of the schur complement , 1970 .

[21]  P. R. Milch A multi-dimensional linear growth birth and death process , 1965 .

[22]  Zixiang Zhou,et al.  Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry , 2005 .

[23]  F. A. Grünbaum,et al.  Orthogonal polynomials satisfying differential equations: The role of the Darboux transformation , 1996 .

[24]  Manuel Mañas,et al.  Multivariate orthogonal polynomials and integrable systems , 2014, Advances in Mathematics.

[25]  Wolfgang K. Schief,et al.  Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory , 2002 .

[26]  Yuan Xu,et al.  Lecture notes on orthogonal polynomials of several variables , 2004 .

[27]  I. Shafarevich Basic algebraic geometry , 1974 .

[28]  Yuan Xu Common zeros of polynomials in several variables and higher dimensional quadrature , 2020 .

[29]  Yuan Xu On discrete orthogonal polynomials of several variables , 2004, Adv. Appl. Math..

[30]  Manuel Mañas,et al.  Matrix orthogonal Laurent polynomials on the unit circle and Toda type integrable systems , 2013, 1312.0150.

[31]  Francisco Marcellán,et al.  Geronimus spectral transforms and measures on the complex plane , 2008 .

[32]  Yuan Xu Orthogonal polynomials and cubature formulae on balls, simplices, and spheres , 2001 .

[33]  Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum , 2000, math-ph/0009001.

[34]  Francisco Marcellán,et al.  Darboux transformation and perturbation of linear functionals , 2004 .

[35]  Lidia Fernández,et al.  Weak classical orthogonal polynomials in two variables , 2005 .

[36]  P. Moerbeke,et al.  Group factorization, moment matrices, and Toda lattices , 1997 .

[37]  Yuan Xu,et al.  On multivariate orthogonal polynomials , 1993 .

[38]  I. Gel'fand,et al.  Determinants of matrices over noncommutative rings , 1991 .

[39]  Jaroslav Kautsky,et al.  Jacobi matrices for measures modified by a rational factor , 2005, Numerical Algorithms.

[40]  A. R. Richardson Simultaneous Linear Equations over a Division Algebra , 2022 .

[41]  I. Gel'fand,et al.  A theory of noncommutative determinants and characteristic functions of graphs , 1992 .