An overview of generalised Kac-Moody algebras on compact real manifolds

A generalised notion of Kac-Moody algebra is defined using smooth maps from a compact real manifold $\mathcal{M}$ to a finite-dimensional Lie group, by means of complete orthonormal bases for a Hermitian inner product on the manifold and a Fourier expansion. The Peter--Weyl theorem for the case of manifolds related to compact Lie groups and coset spaces is discussed, and appropriate Hilbert bases for the space $L^{2}(\mathcal{M})$ of square-integrable functions are constructed. It is shown that such bases are characterised by the representation theory of the compact Lie group, from which a complete set of labelling operator is obtained. The existence of central extensions of generalised Kac-Moody algebras is analysed using a duality property of Hermitian operators on the manifold, and the corresponding root systems are constructed. Several applications of physically relevant compact groups and coset spaces are discussed.

[1]  R. T. Sharp,et al.  Number of independent missing label operators , 1976 .

[2]  A class of Lorentzian Kac-Moody algebras , 2002, hep-th/0205068.

[3]  I. Bars Local Charge Algebras in Quantum Chiral Models and Gauge Theories , 1985 .

[4]  E. Sezgin,et al.  Central Extensions of Area Preserving Membrane Algebras , 1988 .

[5]  H. Simmons A Friendly Giant. , 1981 .

[6]  Representations of Lie Algebras and Partial Differential Equations , 2016, 1601.07646.

[7]  J. Avery,et al.  Hyperspherical Harmonics and Their Physical Applications , 2017 .

[8]  W. Marsden I and J , 2012 .

[9]  C. Lam,et al.  Internal-Labeling Problem , 1969 .

[10]  E. Beltrametti,et al.  On the number of Casimir operators associated with any lie group , 1966 .

[11]  A. W. Knapp,et al.  Representations of semisimple Lie groups , 2000 .

[12]  Fizikos ir matematikos institutas,et al.  Mathematical apparatus of the theory of angular momentum , 1962 .

[13]  R. C. Johnson,et al.  Angular Momentum in Quantum Mechanics , 2015 .

[14]  H. Ruegg,et al.  A Set of Harmonic Functions for the Group SU(3) , 1965 .

[15]  B. Torrésani,et al.  Classification and construction of quasisimple Lie algebras , 1990 .

[16]  Richard E. Borcherds,et al.  Monstrous moonshine and monstrous Lie superalgebras , 1992 .

[17]  L. Biedenharn,et al.  On the Representations of the Semisimple Lie Groups. II , 1963 .

[18]  Ozlem Umdu,et al.  Monstrous moonshine , 2019, 100 Years of Math Milestones.

[19]  P. West Introduction to Strings and Branes , 2012 .

[20]  J. Schwinger FIELD THEORY COMMUTATORS , 1959 .

[21]  D. Gross,et al.  Lectures on Current Algebra and Its Applications , 1972 .

[22]  R. Sharp Internal‐labeling operators , 1975 .

[23]  L. Frappat,et al.  Generalized Kac-Moody algebras and the diffeomorphism group of a closed surface , 1990 .

[24]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[25]  A simple construction for the Fischer-Griess monster group , 1985 .

[26]  V. Kats Simple graduated Lie algebras of finite growth , 1967 .

[27]  L. Biedenharn On the Representations of the Semisimple Lie Groups. I. The Explicit Construction of Invariants for the Unimodular Unitary Group in N Dimensions , 1963 .

[28]  M. Flohr,et al.  Conformal Field Theory , 2006 .

[29]  R. Campoamor-Stursberg Internal labelling problem: an algorithmic procedure , 2011 .

[30]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[31]  L. Frappat,et al.  Extended super-Kač-Moody algebras and their super-derivation algebras , 1990 .

[32]  B. Nilsson,et al.  Kaluza-Klein Supergravity , 1986 .

[33]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[34]  H. Weyl,et al.  Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe , 1927 .

[35]  D. B. Fuks Cohomology of Infinite-Dimensional Lie Algebras , 1986 .

[36]  E. Sezgin,et al.  Properties of the Eleven-Dimensional Supermembrane Theory , 1988 .

[37]  Internal labelling: the classical groups † , 1970 .

[38]  Natalie M. Paquette,et al.  A Borcherds–Kac–Moody Superalgebra with Conway Symmetry , 2018, Communications in Mathematical Physics.

[39]  James D. Louck,et al.  Unitary Symmetry And Combinatorics , 2008 .

[40]  P. Sorba,et al.  An attempt to relate area-preserving diffeomorphisms to Kac-Moody algebras , 1991 .

[41]  P. Goddard,et al.  Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .

[42]  D. Sankoff,et al.  Tables of branching rules for representations of simple Lie algebras , 1973 .

[43]  Wu-Ki Tung,et al.  Group Theory in Physics , 1985 .

[44]  Alexander M. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .

[45]  P. Sorba,et al.  EXTENDED KAC–MOODY ALGEBRAS AND APPLICATIONS , 1992 .

[46]  B. Janssens Loop groups , 2016 .

[47]  R. Moody Lie algebras associated with generalized Cartan matrices , 1967 .

[48]  E. Floratos,et al.  A note on the classical symmetries of the closed bosonic membranes , 1988 .

[49]  I. Antoniadis,et al.  New realizations of the Virasoro algebra as membrane symmetries , 1988 .

[50]  M. Duff,et al.  Kac-moody Symmetries of {Kaluza-Klein} Theories , 1984 .

[51]  S. Adler,et al.  Current algebras and applications to particle physics , 1968 .

[52]  Shi-Hai Dong Kaluza-Klein Theory , 2011 .

[53]  David Bailin,et al.  Kaluza-Klein theories , 1987 .