An overview of generalised Kac-Moody algebras on compact real manifolds
暂无分享,去创建一个
[1] R. T. Sharp,et al. Number of independent missing label operators , 1976 .
[2] A class of Lorentzian Kac-Moody algebras , 2002, hep-th/0205068.
[3] I. Bars. Local Charge Algebras in Quantum Chiral Models and Gauge Theories , 1985 .
[4] E. Sezgin,et al. Central Extensions of Area Preserving Membrane Algebras , 1988 .
[5] H. Simmons. A Friendly Giant. , 1981 .
[6] Representations of Lie Algebras and Partial Differential Equations , 2016, 1601.07646.
[7] J. Avery,et al. Hyperspherical Harmonics and Their Physical Applications , 2017 .
[8] W. Marsden. I and J , 2012 .
[9] C. Lam,et al. Internal-Labeling Problem , 1969 .
[10] E. Beltrametti,et al. On the number of Casimir operators associated with any lie group , 1966 .
[11] A. W. Knapp,et al. Representations of semisimple Lie groups , 2000 .
[12] Fizikos ir matematikos institutas,et al. Mathematical apparatus of the theory of angular momentum , 1962 .
[13] R. C. Johnson,et al. Angular Momentum in Quantum Mechanics , 2015 .
[14] H. Ruegg,et al. A Set of Harmonic Functions for the Group SU(3) , 1965 .
[15] B. Torrésani,et al. Classification and construction of quasisimple Lie algebras , 1990 .
[16] Richard E. Borcherds,et al. Monstrous moonshine and monstrous Lie superalgebras , 1992 .
[17] L. Biedenharn,et al. On the Representations of the Semisimple Lie Groups. II , 1963 .
[18] Ozlem Umdu,et al. Monstrous moonshine , 2019, 100 Years of Math Milestones.
[19] P. West. Introduction to Strings and Branes , 2012 .
[20] J. Schwinger. FIELD THEORY COMMUTATORS , 1959 .
[21] D. Gross,et al. Lectures on Current Algebra and Its Applications , 1972 .
[22] R. Sharp. Internal‐labeling operators , 1975 .
[23] L. Frappat,et al. Generalized Kac-Moody algebras and the diffeomorphism group of a closed surface , 1990 .
[24] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[25] A simple construction for the Fischer-Griess monster group , 1985 .
[26] V. Kats. Simple graduated Lie algebras of finite growth , 1967 .
[27] L. Biedenharn. On the Representations of the Semisimple Lie Groups. I. The Explicit Construction of Invariants for the Unimodular Unitary Group in N Dimensions , 1963 .
[28] M. Flohr,et al. Conformal Field Theory , 2006 .
[29] R. Campoamor-Stursberg. Internal labelling problem: an algorithmic procedure , 2011 .
[30] I. Stewart,et al. Infinite-dimensional Lie algebras , 1974 .
[31] L. Frappat,et al. Extended super-Kač-Moody algebras and their super-derivation algebras , 1990 .
[32] B. Nilsson,et al. Kaluza-Klein Supergravity , 1986 .
[33] Loring W. Tu,et al. Differential forms in algebraic topology , 1982, Graduate texts in mathematics.
[34] H. Weyl,et al. Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe , 1927 .
[35] D. B. Fuks. Cohomology of Infinite-Dimensional Lie Algebras , 1986 .
[36] E. Sezgin,et al. Properties of the Eleven-Dimensional Supermembrane Theory , 1988 .
[37] Internal labelling: the classical groups † , 1970 .
[38] Natalie M. Paquette,et al. A Borcherds–Kac–Moody Superalgebra with Conway Symmetry , 2018, Communications in Mathematical Physics.
[39] James D. Louck,et al. Unitary Symmetry And Combinatorics , 2008 .
[40] P. Sorba,et al. An attempt to relate area-preserving diffeomorphisms to Kac-Moody algebras , 1991 .
[41] P. Goddard,et al. Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .
[42] D. Sankoff,et al. Tables of branching rules for representations of simple Lie algebras , 1973 .
[43] Wu-Ki Tung,et al. Group Theory in Physics , 1985 .
[44] Alexander M. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .
[45] P. Sorba,et al. EXTENDED KAC–MOODY ALGEBRAS AND APPLICATIONS , 1992 .
[46] B. Janssens. Loop groups , 2016 .
[47] R. Moody. Lie algebras associated with generalized Cartan matrices , 1967 .
[48] E. Floratos,et al. A note on the classical symmetries of the closed bosonic membranes , 1988 .
[49] I. Antoniadis,et al. New realizations of the Virasoro algebra as membrane symmetries , 1988 .
[50] M. Duff,et al. Kac-moody Symmetries of {Kaluza-Klein} Theories , 1984 .
[51] S. Adler,et al. Current algebras and applications to particle physics , 1968 .
[52] Shi-Hai Dong. Kaluza-Klein Theory , 2011 .
[53] David Bailin,et al. Kaluza-Klein theories , 1987 .