Polymeric Thermal Microactuator With Embedded Silicon Skeleton: Part I—Design and Analysis

This paper presents the modeling of a new design of a polymeric thermal microactuator with an embedded meander-shaped silicon skeleton. The design has a skeleton embedded in a polymer block. The embedded skeleton improves heat transfer to the polymer and reinforces it. In addition, the skeleton laterally constrains the polymer to direct the volumetric thermal expansion of the polymer in the actuation direction. The complex geometry and multiple-material composition of the actuator make its modeling very involved. In this paper, the main focus is on the development of approximate electrothermal and thermoelastic models to capture the essence of the actuator behavior. The approximate models are validated with a fully coupled multiphysics finite element model and with experimental testing. The approximate models can be useful as an inexpensive tool for subsequent design optimization. Evaluation, using the analytical and numerical models, shows that the polymer actuator with the embedded skeleton outperforms its counterpart without a skeleton, which is in terms of heat transfer and, thus, response time, actuation stress, and planarity.

[1]  Pohl,et al.  Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.

[2]  Gih-Keong Lau,et al.  Polymeric Thermal Microactuator With Embedded Silicon Skeleton: Part II—Fabrication, Characterization, and Application for 2-DOF Microgripper , 2008, Journal of Microelectromechanical Systems.

[3]  N. Nguyen,et al.  A polymeric microgripper with integrated thermal actuators , 2004 .

[4]  Victor M. Bright,et al.  Applications for surface-micromachined polysilicon thermal actuators and arrays , 1997 .

[5]  Dong-Wook Oh,et al.  An in-plane thermal unimorph using confined polymers , 2007 .

[7]  Hiroyuki Fujita,et al.  Fabrication and operation of polyimide bimorph actuators for a ciliary motion system , 1993 .

[8]  F. Keulen,et al.  Thermo-elastic behavior of a polymeric layer bonded between rigid interfaces , 2008 .

[9]  Pasqualina M. Sarro,et al.  Powerful polymeric thermal microactuator with embedded silicon microstructure , 2007 .

[10]  Stuart W. Churchill,et al.  Correlating equations for laminar and turbulent free convection from a horizontal cylinder , 1975 .

[11]  Hsiang-Chuan Tsai,et al.  Compressive stiffness of elastic layers bonded between rigid plates , 1998 .

[12]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[13]  G. Lau Micro-electro-mechanical actuators using confined polymers , 2007 .

[14]  H. Y. Fan Properties of semiconductors , 1958 .

[15]  Richard J. Farris,et al.  The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating , 2002 .

[16]  Michael F. Ashby,et al.  The selection of mechanical actuators based on performance indices , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Richard C. Ruby,et al.  Micromachined 1 × 2 optical-fiber switch , 1996 .

[18]  Daniel Boley,et al.  A simple method to determine the stability and margin of stability of 2-D recursive filters , 1992 .

[19]  H. Espinosa,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Thermal Actuator for Nanoscale in Situ Microscopy Testing: Design and Characterization , 2022 .

[20]  J. Wallmark,et al.  Properties of Semiconductors , 1974 .

[21]  A. Clark,et al.  Elastic Constants of Single-Crystal YIG , 1961 .

[22]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[23]  P B Lindley,et al.  Compression moduli for blocks of soft elastic material bonded to rigid end plates , 1979 .

[24]  Lawrence F. Shampine,et al.  Solving Boundary Value Problems for Ordinary Differential Equations in M atlab with bvp 4 c , 2022 .

[25]  Jiaping Yang,et al.  An electro-thermal bimorph-based microactuator for precise track-positioning of optical disk drives , 2005 .

[26]  Y. Gianchandani,et al.  Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices , 2001 .

[27]  O. Sandberg,et al.  The thermal properties of an epoxy resin at high pressure and temperature , 1977 .

[28]  Jin-Chern Chiou,et al.  Variable optical attenuator using a thermal actuator array with dual shutters , 2004 .

[29]  Ali Sumer,et al.  Elastic Constants of Single-Crystals CaMg2 , 1962 .

[30]  P. Sarro,et al.  Actuated elastomers with rigid vertical electrodes , 2006 .

[31]  Neville K. S. Lee,et al.  Analysis and design of polysilicon thermal flexure actuator , 1999 .

[32]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[33]  T. Hubbard,et al.  Time and frequency response of two-arm micromachined thermal actuators , 2003 .