Elastic cloaking theory

The transformation theory of optics and acoustics is developed for the equations of linear anisotropic elasticity. The transformed equations correspond to non-unique material properties that can be varied for a given transformation by selection of the matrix relating displacements in the two descriptions. This gauge matrix can be chosen to make the transformed density isotropic for any transformation although the stress in the transformed material is not generally symmetric. Symmetric stress is obtained only if the gauge matrix is identical to the transformation matrix, in agreement with Milton et al. (2006). The elastic transformation theory is applied to the case of cylindrical anisotropy. The equations of motion for the transformed material with isotropic density are expressed in Stroh format, suitable for modeling cylindrical elastic cloaking. It is shown that there is a preferred approximate material with symmetric stress that could be a useful candidate for making cylindrical elastic cloaking devices.

[1]  J. Lothe,et al.  On the existence of surface‐wave solutions for anisotropic elastic half‐spaces with free surface , 1976 .

[2]  A. Norris,et al.  Wave impedance matrices for cylindrically anisotropic radially inhomogeneous elastic solids , 2010, 1003.5713.

[3]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[4]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[5]  Daniel Torrent,et al.  Acoustic cloaking in two dimensions: a feasible approach , 2008 .

[6]  Mohamed Farhat,et al.  Cloaking bending waves propagating in thin elastic plates , 2009 .

[7]  A. Shuvalov A sextic formalism for three–dimensional elastodynamics of cylindrically anisotropic radially inhomogeneous materials , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[9]  Fan Yang,et al.  A multilayer structured acoustic cloak with homogeneous isotropic materials , 2008 .

[10]  G. Hu,et al.  Design Arbitrary Shaped 2D Acoustic Cloak Without Singularity , 2009, 0907.2282.

[11]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.

[12]  A. Norris Acoustic cloaking theory , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  G. Milton,et al.  Which Elasticity Tensors are Realizable , 1995 .

[14]  M. C. Pease,et al.  Methods of Matrix Algebra , 1965 .

[15]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .

[16]  C. Scandrett,et al.  Acoustic cloaking using layered pentamode materials. , 2010, The Journal of the Acoustical Society of America.

[17]  A. Norris,et al.  Acoustic metafluids. , 2008, The Journal of the Acoustical Society of America.

[18]  Graeme W Milton,et al.  On modifications of Newton's second law and linear continuum elastodynamics , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  A. Norris,et al.  Acoustic metafluids made from three acoustic fluids. , 2010, The Journal of the Acoustical Society of America.

[20]  G. Milton The Theory of Composites , 2002 .

[21]  David R. Smith,et al.  Scattering theory derivation of a 3D acoustic cloaking shell. , 2008, Physical review letters.

[22]  J. Pendry,et al.  An acoustic metafluid: realizing a broadband acoustic cloak , 2008 .

[23]  Huanyang Chen,et al.  Acoustic cloaking and transformation acoustics , 2010 .

[24]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[25]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[26]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[27]  Ray W. Ogden,et al.  Incremental Statics and Dynamics of Pre-Stressed Elastic Materials , 2007 .

[28]  William Thomson,et al.  XXI. Elements of a mathematical theory of elasticity , 1856, Philosophical Transactions of the Royal Society of London.

[29]  Steven A. Cummer,et al.  Material parameters and vector scaling in transformation acoustics , 2008 .

[30]  Alexander B. Movchan,et al.  Achieving control of in-plane elastic waves , 2008, 0812.0912.

[31]  Liang-Wu Cai,et al.  Analysis of Cummer–Schurig acoustic cloaking , 2007 .