Adaptive search space scaling in digital image registration.

An image registration technique for application in X-ray, gamma-ray, and magnetic resonance imaging is described. The technique involves searching a real-valued, multidimensional, rectangular, symmetric space of bilinear geometrical transformations for a globally optimal transformation. Physical considerations provide theoretical limits on the search space, but the theoretically maximum allowable space is still often much larger than the smallest rectangular symmetric subspace that contains the optimal transformation. To reduce the search time, the current practice is to guess an optimal subspace from the maximum allowable space. This reduced space is then discretized and searched. An automatic technique to estimate adaptively a subspace from the maximum space during the search process itself is described. This adaptive technique is tested with two quite different types of search algorithms, namely, genetic algorithms and simulated annealing.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  Frank C. Andrews,et al.  Equilibrium Statistical Mechanics , 1963 .

[3]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[4]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[5]  Kenneth de Jong,et al.  Adaptive System Design: A Genetic Approach , 1980, IEEE Trans. Syst. Man Cybern..

[6]  F. James,et al.  Monte Carlo theory and practice , 1980 .

[7]  W. Chilcote,et al.  Digital subtraction angiography of the carotid arteries: a comparative study in 100 patients. , 1981, Radiology.

[8]  Sartaj Sahni,et al.  Concepts in discrete mathematics , 1981 .

[9]  A. Klinkhamer,et al.  [Digital subtraction angiography]. , 1981, Nederlands tijdschrift voor geneeskunde.

[10]  William R. Brody,et al.  Digital Subtraction Angiography , 1982, IEEE Transactions on Nuclear Science.

[11]  G. Bekey,et al.  Random search techniques for optimization of nonlinear systems with many parameters , 1983 .

[12]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[13]  D C Levin,et al.  Digital subtraction angiography: myths and reality. , 1984, Radiology.

[14]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[15]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Alain Venot,et al.  Automated Correction of Patient Motion and Gray Values Prior to Subtraction in Digitized Angiography , 1984, IEEE Transactions on Medical Imaging.

[17]  E. Bonomi,et al.  The N-City Travelling Salesman Problem: Statistical Mechanics and the Metropolis Algorithm , 1984 .

[18]  Charles Elving Thorpe,et al.  Fido: vision and navigation for a robot rover , 1984 .

[19]  Takao Akatsuka,et al.  REGISTRATION OF LOCALLY DISTORTED IMAGES BY MULTIWINDOW PATTERN MATCHING AND DISPLACEMENT INTERPOLATION: THE PROPOSAL OF AN ALGORITHM AND ITS APPLICATION TO DIGITAL SUBTRACTION ANGIOGRAPHY. , 1984 .

[20]  D. Mitra,et al.  Convergence and finite-time behavior of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[21]  John J. Grefenstette,et al.  Genetic Search with Approximate Function Evaluation , 1985, ICGA.

[22]  Robert H. Swendsen,et al.  Statistical mechanics and disordered systems , 1985, CACM.

[23]  Paolo Carnevali,et al.  Image Processing by Simulated Annealing , 1985, IBM J. Res. Dev..

[24]  C. Tovey Hill Climbing with Multiple Local Optima , 1985 .

[25]  D. Mitra,et al.  Convergence and finite-time behavior of simulated annealing , 1986, Advances in Applied Probability.

[26]  Brian Wichmann,et al.  Building a random-number generator , 1987 .

[27]  David J. Sirag,et al.  Toward a unified thermodynamic genetic operator , 1987 .

[28]  Harrison H. Barrett,et al.  Optical Implementations In Boltzmann Machines , 1987 .

[29]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[30]  A. Levin Digital subtraction angiography. , 1987, Pediatric annals.

[31]  John Fitzpatrick,et al.  A class of one-to-one two-dimensional transformations , 1987 .

[32]  John J. Grefenstette,et al.  Technique For Automatic Motion Correction In Digital Subtraction Angiography , 1987 .

[33]  Hsuan Chang,et al.  Displaytool: An Image Display Utility For Sun Workstations , 1988, Medical Imaging.

[34]  John J. Grefenstette,et al.  The Reduction Of Motion Artifacts In Digital Subtraction Angiography By Geometrical Image Transformation , 1988, Medical Imaging.

[35]  J. Michael Fitzpatrick,et al.  The existence of geometrical density-image transformations corresponding to object motion , 1988, Comput. Vis. Graph. Image Process..

[36]  John J. Grefenstette,et al.  A System for Image Registration in Digital Subtraction Angiography , 1988 .

[37]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..