Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers.

Multifunctional colloidal micro and nano-particles with controlled architectures have very promising properties for applications in bio and nanotechnologies. Here we report on the unique dichotomous dynamical behaviour of chiral spherical microparticles, either fluid or solid, manipulated by polarized optical tweezers. The particles are created using a reactive mesogen mixed with a chiral dopant to form cholesteric liquid crystal droplets in water emulsion. The photopolymerization enables the chiral supramolecular configurations to be frozen in solid particles. Different internal architectures in the supramolecular structures, guided by the interfacial chemistry, enable optically isotropic or anisotropic spherical objects to be obtained. For particles having radial configuration of the cholesteric helices, we show that light can exert either a repulsive or attractive force depending on the handedness of its circular polarization, due to the unique selective reflection property of the cholesteric phase. On the other hand, very exotic dynamics is observed in the case of anisotropic chiral particles. Depending on the light handedness, they behave like Janus spherical particles with dissimilar optical properties, meaning that the surface of the dielectric particles is partly transparent and partly reflecting. We foresee interesting potential applications in micro and optofluidics, microphotonics and materials science.

[1]  I. Yamaguchi,et al.  Optical trapping of metallic particles by a fixed Gaussian beam. , 1998, Optics letters.

[2]  M. Dickinson,et al.  Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. , 2008, Optics express.

[3]  David G. Grier,et al.  Optical tweezers in colloid and interface science , 1997 .

[4]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[5]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[6]  L. Marrucci,et al.  Light-induced rotation of dye-doped liquid crystal droplets. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Demetri Psaltis,et al.  Optofluidics for energy applications , 2011, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[8]  D. Grier A revolution in optical manipulation , 2003, Nature.

[9]  Y. Waseda,et al.  Optical trapping of microscopic metal particles. , 1994, Optics letters.

[10]  Nathan J. Jenness,et al.  Towards Holonomic Control of Janus Particles in Optomagnetic Traps , 2009, Advanced materials.

[11]  Pavel Zemánek,et al.  Light at work: The use of optical forces for particle manipulation, sorting, and analysis , 2008, Electrophoresis.

[12]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[13]  Amanda J. Wright,et al.  Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets. , 2004 .

[14]  F. Livolant,et al.  The organization of cholesteric spherulites , 1984 .

[15]  Benjamin M. Ross,et al.  Light pressure on chiral sculptured thin films and the circular Bragg phenomenon , 2008 .

[16]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[17]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[18]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[19]  Chiral particles in a circularly polarised light field: new effects and applications , 2011 .

[20]  Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation. , 2005, Optics express.

[21]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[22]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[23]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[24]  I. Musevic,et al.  Janus nematic colloids driven by light. , 2010, Optics express.

[25]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[26]  M. Humar,et al.  3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. , 2010, Optics express.

[27]  Saulius Juodkazis,et al.  High-efficiency optical transfer of torque to a nematic liquid crystal droplet , 2003 .

[28]  Saulius Juodkazis,et al.  Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers , 2005 .

[29]  Saulius Juodkazis,et al.  Fast optical switching by a laser-manipulated microdroplet of liquid crystal , 1999 .

[30]  Hiroshi Masuhara,et al.  Optical trapping of a metal particle and a water droplet by a scanning laser beam , 1992 .

[31]  Shin-Tson Wu,et al.  Optical wave propagation in a cholesteric liquid crystal using the finite element method , 2003 .

[32]  P. Yeh Optics of Liquid Crystal Displays , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[33]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[34]  Kishan Dholakia,et al.  Light forces the pace: optical manipulation for biophotonics. , 2010, Journal of biomedical optics.

[35]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[36]  A. Hawkins,et al.  The photonic integration of non-solid media using optofluidics , 2011 .

[37]  Miles J. Padgett,et al.  Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner , 2000 .

[38]  Electrically controlled optical bandgap in a structurally chiral material , 2006 .

[39]  W. Greenleaf,et al.  Single-molecule studies of RNA polymerase: motoring along. , 2008, Annual review of biochemistry.

[40]  Stephen M. Morris,et al.  Liquid-crystal lasers , 2010 .

[41]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[42]  Paras N Prasad,et al.  Optical trapping of director structures and defects in liquid crystals using laser tweezers. , 2007, Optics express.

[43]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.