Gromov-Witten classes, quantum cohomology, and enumerative geometry
暂无分享,去创建一个
[1] S. Keel,et al. Intersection theory of moduli space of stable N-pointed curves of genus zero , 1992 .
[2] Edward Witten,et al. Two-dimensional gravity and intersection theory on moduli space , 1990 .
[3] P. Aspinwall,et al. Topological field theory and rational curves , 1991, hep-th/9110048.
[4] Ezra Getzler,et al. Cyclic Operads and Cyclic Homology , 1995 .
[5] R. Rajaraman. TOPOLOGICAL FIELD THEORIES , 1990 .
[6] B. Dubrovin. Integrable systems in topological field theory , 1992 .
[7] Y. Ruan. Topological sigma model and Donaldson-type invariants in Gromov theory , 1996 .
[8] I︠u︡. I. Manin,et al. Cubic forms; algebra, geometry, arithmetic , 1974 .
[9] A. Voronov. Topological field theories, string backgrounds and homotopy algebras , 1994, hep-th/9401023.
[10] S. Yau. Essays on mirror manifolds , 1992 .
[11] M. Kapranov,et al. Koszul duality for Operads , 1994, 0709.1228.
[12] V. Ginzburg,et al. Infinitesimal structure on moduli space of G-bundles , 1992 .
[13] Y. Ruan,et al. A mathematical theory of quantum cohomology , 1994 .
[14] Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes , 1993, hep-th/9309140.