Recognizing and drawing IC-planar graphs

Abstract We give new results about the relationship between 1-planar graphs and RAC graphs. A graph is 1-planar if it has a drawing where each edge is crossed at most once. A graph is RAC if it can be drawn in such a way that its edges cross only at right angles. These two classes of graphs and their relationships have been widely investigated in the last years, due to their relevance in application domains where computing readable graph layouts is important to analyze or design relational data sets. We study IC-planar graphs, the sub-family of 1-planar graphs that admit 1-planar drawings with independent crossings (i.e., no two crossed edges share an endpoint). We prove that every IC-planar graph admits a straight-line RAC drawing, which may require however exponential area. If we do not require right angle crossings, we can draw every IC-planar graph with straight-line edges in linear time and quadratic area. We then study the problem of testing whether a graph is IC-planar. We prove that this problem is NP-hard, even if a rotation system for the graph is fixed. On the positive side, we describe a polynomial-time algorithm that tests whether a triangulated plane graph augmented with a given set of edges that form a matching is IC-planar.

[1]  Christian Bachmaier,et al.  Recognizing Outer 1-Planar Graphs in Linear Time , 2013, GD.

[2]  Walter Didimo,et al.  The Crossing-Angle Resolution in Graph Drawing , 2013 .

[3]  David Eppstein,et al.  On the Density of Maximal 1-Planar Graphs , 2012, Graph Drawing.

[4]  Weidong Huang,et al.  Larger crossing angles make graphs easier to read , 2014, J. Vis. Lang. Comput..

[5]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2009, J. Graph Theory.

[6]  David A. Carrington,et al.  Empirical Evaluation of Aesthetics-based Graph Layout , 2002, Empirical Software Engineering.

[7]  Daniel Král,et al.  Coloring plane graphs with independent crossings , 2010, J. Graph Theory.

[8]  Giuseppe Liotta,et al.  Graph drawing beyond planarity: some results and open problems , 2014, ICTCS.

[9]  Weidong Huang,et al.  Using eye tracking to investigate graph layout effects , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[10]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[11]  Emilio Di Giacomo,et al.  Area requirement of graph drawings with few crossings per edge , 2013, Comput. Geom..

[12]  Peter Eades,et al.  Effects of Crossing Angles , 2008, 2008 IEEE Pacific Visualization Symposium.

[13]  Giuseppe Liotta,et al.  A Linear-Time Algorithm for Testing Outer-1-Planarity , 2013, Algorithmica.

[14]  D. Dolev,et al.  Planar Embedding of Planar Graphs , 1983 .

[15]  Marek Chrobak,et al.  A Linear-Time Algorithm for Drawing a Planar Graph on a Grid , 1995, Inf. Process. Lett..

[16]  Michael A. Bekos,et al.  The Straight-Line RAC Drawing Problem is NP-Hard , 2010, J. Graph Algorithms Appl..

[17]  Franz-Josef Brandenburg,et al.  Journal of Graph Algorithms and Applications 1-planarity of Graphs with a Rotation System 68 Auer Et Al. 1-planarity of Graphs with a Rotation System , 2022 .

[18]  Emilio Di Giacomo,et al.  2-Layer Right Angle Crossing Drawings , 2011, Algorithmica.

[19]  Gábor Tardos,et al.  On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.

[20]  Colin Ware,et al.  Cognitive Measurements of Graph Aesthetics , 2002, Inf. Vis..

[21]  Giuseppe Liotta,et al.  Fáry's Theorem for 1-Planar Graphs , 2012, COCOON.

[22]  Pavel Valtr,et al.  On Geometric Graphs with No k Pairwise Parallel Edges , 1997, Discret. Comput. Geom..

[23]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[24]  Svante Janson,et al.  The Chromatic Number , 2011 .

[25]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[26]  Weidong Huang,et al.  Large Crossing Angles in Circular Layouts , 2010, GD.

[27]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[28]  János Pach,et al.  Small sets supporting fary embeddings of planar graphs , 1988, STOC '88.

[29]  Stephen G. Kobourov,et al.  Straight-Line Grid Drawings of 3-Connected 1-Planar Graphs , 2013, Graph Drawing.

[30]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[31]  David Eppstein,et al.  Parameterized Complexity of 1-Planarity , 2013, WADS.

[32]  Walter Didimo,et al.  A Graph Drawing Application to Web Site Traffic Analysis , 2011, J. Graph Algorithms Appl..

[33]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[34]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..

[35]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..

[36]  Helen C. Purchase,et al.  Effective information visualisation: a study of graph drawing aesthetics and algorithms , 2000, Interact. Comput..

[37]  Weidong Huang,et al.  Improving Force-Directed Graph Drawings by Making Compromises Between Aesthetics , 2010, 2010 IEEE Symposium on Visual Languages and Human-Centric Computing.

[38]  Carsten Thomassen,et al.  Rectilinear drawings of graphs , 1988, J. Graph Theory.

[39]  Walter Didimo,et al.  Recognizing and Drawing IC-Planar Graphs , 2015, Graph Drawing.

[40]  Emilio Di Giacomo,et al.  Heuristics for the Maximum 2-Layer RAC Subgraph Problem , 2012, Comput. J..

[41]  János Pach,et al.  The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..

[42]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[43]  Michael A. Bekos,et al.  Maximizing the Total Resolution of Graphs , 2010, Comput. J..

[44]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[45]  Martin Grohe,et al.  Computing crossing numbers in quadratic time , 2000, STOC '01.

[46]  Xin Zhang Drawing complete multipartite graphs on the plane with restrictions on crossings , 2013, ArXiv.

[47]  Eyal Ackerman,et al.  On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2006, SCG '06.

[48]  Walter Didimo,et al.  Topology-Driven Force-Directed Algorithms , 2010, GD.

[49]  Michael J. Pelsmajer,et al.  Crossing Numbers and Parameterized Complexity , 2007, Graph Drawing.

[50]  Michael A. Bekos,et al.  On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Algorithmica.

[51]  Kozo Sugiyama Graph Drawing and Applications for Software and Knowledge Engineers , 2002, Series on Software Engineering and Knowledge Engineering.

[52]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[53]  Walter Didimo Density of straight-line 1-planar graph drawings , 2013, Inf. Process. Lett..

[54]  Michael Jünger,et al.  Graph Drawing Software , 2003, Graph Drawing Software.

[55]  Michael O. Albertson Chromatic number, independence ratio, and crossing number , 2008, Ars Math. Contemp..

[56]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[57]  Xin Zhang,et al.  The structure of plane graphs with independent crossings and its applications to coloring problems , 2013 .

[58]  Jan Kyncl Enumeration of simple complete topological graphs , 2009, Eur. J. Comb..

[59]  A. John MINING GRAPH DATA , 2022 .

[60]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[61]  Emilio Di Giacomo,et al.  h-Quasi Planar Drawings of Bounded Treewidth Graphs in Linear Area , 2012, WG.

[62]  Lawrence B. Holder,et al.  Mining Graph Data , 2006 .

[63]  János Pach,et al.  Graphs drawn with few crossings per edge , 1996, GD.

[64]  Bojan Mohar,et al.  Adding One Edge to Planar Graphs Makes Crossing Number and 1-Planarity Hard , 2012, SIAM J. Comput..

[65]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[66]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .