Change Frequency Heatmaps for Temporal Multivariate Phenological Data Analysis

The huge amount of multivariate temporal data that has been produced in several applications demands the creation of appropriate tools for the analysis and pattern characterization of change. This paper introduces a novel image-based representation, named Change Frequency Heatmap (CFH), to encode temporal changes of multivariate numerical data. The method computes histograms of change patterns observed at successive timestamps. We validate the use of CFHs through the creation of a temporal change characterization tool to support complex plant phenology analysis, concerning the characterization of plant life cycle changes of multiple individuals and species over time. We demonstrate the potential of CFH to support visual identification of complex temporal change patterns, especially to decipher interindividual variations in plant phenology.

[1]  Guy Woodward,et al.  Biodiversity, species interactions and ecological networks in a fragmented world , 2012 .

[2]  D. Carstensen,et al.  Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space. , 2016, Ecology.

[3]  J. Nahman,et al.  Path-set based optimal planning of new urban distribution networks , 2017 .

[4]  Marco Antonio Assis,et al.  Estrutura e composição florística de um Cerrado sensu stricto e sua importância para propostas de restauração ecológica , 2013 .

[5]  Dezhan Qu,et al.  Correlation Visualization of Time-Varying Patterns for Multi-Variable Data , 2016, IEEE Access.

[6]  A. Biere,et al.  Time after time: flowering phenology and biotic interactions. , 2007, Trends in ecology & evolution.

[7]  Bruna Alberton,et al.  Linking plant phenology to conservation biology , 2016 .

[8]  M. Delibes,et al.  Microgeographical, inter-individual, and intra-individual variation in the flower characters of Iberian pear Pyrus bourgaeana (Rosaceae) , 2011, Oecologia.

[9]  C. Herrera Multiplicity in Unity: Plant Subindividual Variation and Interactions with Animals , 2009 .

[10]  H. G. Baker,et al.  Rainfall as a factor in the release, timing, and synchronization of anthesis by tropical trees and shrubs , 1976 .

[11]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[12]  L. Morellato,et al.  Effects of environmental conditions associated to the cardinal orientation on the reproductive phenology of the cerrado savanna tree Xylopia aromatica (Annonaceae). , 2011, Anais da Academia Brasileira de Ciencias.

[13]  L. A. Fournier,et al.  Un método cuantitativo para la medición de características fenológicas em árboles , 1974 .

[14]  C. Schaefer,et al.  Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority , 2015, Plant and Soil.

[15]  Jane Memmott,et al.  Global warming and the disruption of plant-pollinator interactions. , 2007, Ecology letters.

[16]  Christopher Baraloto,et al.  A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. , 2015, Ecology letters.

[17]  Yi Gu,et al.  Mining Graphs for Understanding Time-Varying Volumetric Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[18]  Daniel A. Keim,et al.  Temporal MDS Plots for Analysis of Multivariate Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[19]  Michael J. Freeman,et al.  Motion history histograms for human action recognition , 2009 .

[20]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[21]  A F Bobick,et al.  Movement, activity and action: the role of knowledge in the perception of motion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[23]  S. Schreiber,et al.  Why intraspecific trait variation matters in community ecology. , 2011, Trends in ecology & evolution.

[24]  R. Primack VARIATION IN THE PHENOLOGY OF NATURAL POPULATIONS OF MONTANE SHRUBS IN NEW ZEALAND , 1980 .

[25]  P. Sánchez,et al.  VISUALIZATION METHODS FOR TIME-DEPENDENT DATA-AN OVERVIEW , 2003 .

[26]  Irene L. Hudson,et al.  Applications of Circular Statistics in Plant Phenology: a Case Studies Approach , 2010 .

[27]  L. P. Morellato,et al.  Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação , 2002 .

[28]  Ricardo da Silva Torres,et al.  Visualizing Temporal Graphs using Visual Rhythms - A Case Study in Soccer Match Analysis , 2017, VISIGRAPP.

[29]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  J. Terborgh,et al.  The Phenology of Tropical Forests: Adaptive Significance and Consequences for Primary Consumers* , 1993 .

[31]  Heidrun Schumann,et al.  Visualizing time-oriented data - A systematic view , 2007, Comput. Graph..

[32]  L. Patrícia,et al.  Phenology of Atlantic Rain Forest Trees: A Comparative Study1 , 2000 .

[33]  Gary R. Bradski,et al.  Motion segmentation and pose recognition with motion history gradients , 2000, Proceedings Fifth IEEE Workshop on Applications of Computer Vision.

[34]  Daniela C. Talora,et al.  Fenologia de espécies arbóreas em floresta de planície litorânea do sudeste do Brasil , 2000 .

[35]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[36]  H. Lieth Phenology and Seasonality Modeling , 1974, Ecological Studies.

[37]  L. Morellato,et al.  Edge Effects on the Phenology of the Guamirim, Myrcia Guianensis (Myrtaceae), a Cerrado Tree, Brazil , 2016 .

[38]  James W. Davis,et al.  An appearance-based representation of action , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[39]  Anthony K. H. Tung,et al.  Large Scale Cohesive Subgraphs Discovery for Social Network Visual Analysis , 2012, Proc. VLDB Endow..

[40]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[41]  H. G. Baker,et al.  A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica , 1994 .

[42]  Leonor Patricia C. Morellato,et al.  Crepuscular pollination and reproductive ecology of Trembleya laniflora (Melastomataceae), an endemic species in mountain rupestrian grasslands , 2016 .

[43]  C. Augspurger Phenology, flowering synchrony, and fruit set of six neotropical shrubs , 1983 .

[44]  Jurandy Almeida,et al.  Modeling plant phenology database: Blending near-surface remote phenology with on-the-ground observations , 2016 .

[45]  Márcio S Araújo,et al.  The ecological causes of individual specialisation. , 2011, Ecology letters.

[46]  Jordi Bascompte,et al.  Temporal dynamics in a pollination network. , 2008, Ecology.

[47]  Daniel A. Keim,et al.  Pixel bar charts: a visualization technique for very large multi-attribute data sets? , 2002, Inf. Vis..

[48]  James W. Davis,et al.  The representation and recognition of human movement using temporal templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[49]  J. Ollerton,et al.  Flowering phenology: An example of relaxation of natural selection? , 1992, Trends in ecology & evolution.

[50]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[51]  A. M. Giulietti,et al.  Flora da Serra do Cipó, Minas Gerais: Caracterização e Lista das Espécies , 1987 .

[52]  B. Rathcke,et al.  Phenological Patterns of Terrestrial Plants , 1985 .

[53]  Pierre Dragicevic,et al.  Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data , 2016, IEEE Transactions on Visualization and Computer Graphics.