Conformal Embedding Analysis with Local Graph Modeling on the Unit Hypersphere

We present the Conformal Embedding Analysis (CEA) for feature extraction and dimensionality reduction. Incorporating both conformal mapping and discriminating analysis, CEA projects the high-dimensional data onto the unit hypersphere and preserves intrinsic neighbor relations with local graph modeling. Through the embedding, resulting data pairs from the same class keep the original angle and distance information on the hypersphere, whereas neighboring points of different class are kept apart to boost discriminating power. The subspace learned by CEA is gray-level variation tolerable since the cosine-angle metric and the normalization processing enhance the robustness of the conformal feature extraction. We demonstrate the effectiveness of the proposed method with comprehensive comparisons on visual classification experiments.

[1]  Ming-Hsuan Yang,et al.  Extended isomap for pattern classification , 2002, AAAI/IAAI.

[2]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[3]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[4]  Kun Zhou,et al.  Locality Sensitive Discriminant Analysis , 2007, IJCAI.

[5]  Yuxiao Hu,et al.  Discriminant Analysis on Embedded Manifold , 2004, ECCV.

[6]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[7]  Shuicheng Yan,et al.  Graph embedding: a general framework for dimensionality reduction , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  David M. J. Tax,et al.  Kernel Whitening for One-Class Classification , 2003, Int. J. Pattern Recognit. Artif. Intell..

[9]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[11]  Thomas S. Huang Locally Linear Embedded Eigenspace Analysis , 2005 .

[12]  Jiawei Han,et al.  Orthogonal Laplacianfaces for Face Recognition , 2006, IEEE Transactions on Image Processing.

[13]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Kurt Hornik,et al.  Local PCA algorithms , 2000, IEEE Trans. Neural Networks Learn. Syst..

[15]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[16]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[17]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[18]  Alexander J. Smola,et al.  Classification in a normalized feature space using support vector machines , 2003, IEEE Trans. Neural Networks.

[19]  Hwann-Tzong Chen,et al.  Local discriminant embedding and its variants , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[22]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[23]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[24]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[25]  Yun Fu,et al.  Unsupervised Locally Embedded Clustering for Automatic High-Dimensional Data Labeling , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[26]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[27]  David M. J. Tax,et al.  Kernel Whitening for One-Class Classification , 2002, Int. J. Pattern Recognit. Artif. Intell..

[28]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[29]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[30]  Nanning Zheng,et al.  Neighborhood Discriminant Projection for Face Recognition , 2006, International Conference on Pattern Recognition.