Stability of sharp Fourier restriction to spheres

Let g : Rd Ñ R be a radial function. In dimensions d P t3, 4, 5, 6, 7u, we prove that the constant functions on the unit sphere Sd ́1 Ă Rd maximize the weighted adjoint Fourier restriction inequality

[1]  M. Christ,et al.  Gaussians Rarely Extremize Adjoint Fourier Restriction Inequalities For Paraboloids , 2010, 1012.1346.

[2]  A sharpened Strichartz inequality for radial functions , 2017, Journal of Functional Analysis.

[3]  Shuanglin Shao,et al.  Maximizers for the Strichartz and the Sobolev-Strichartz inequalities for the Schrödinger equation , 2009 .

[4]  D. O. Silva,et al.  Extremizers for Fourier restriction inequalities: Convex arcs , 2012, Journal d'Analyse Mathématique.

[5]  Gianmarco Brocchi,et al.  Sharp Strichartz inequalities for fractional and higher-order Schrödinger equations , 2018, Analysis & PDE.

[6]  L. Fanelli,et al.  On the existence of maximizers for a family of restriction theorems , 2010, 1007.2063.

[7]  T. Ozawa,et al.  Some sharp bilinear space-time estimates for the wave equation , 2015, 1506.04504.

[8]  D. Foschi Global Maximizers for the Sphere Adjoint Fourier Restriction Inequality , 2013, 1310.2510.

[9]  Shuanglin Shao The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality , 2008, 0809.0157.

[10]  Damiano Foschi Maximizers for the Strichartz Inequality , 2004 .

[11]  D. O. Silva,et al.  On extremizers for Strichartz estimates for higher order Schrödinger equations , 2016, 1606.02623.

[12]  A. Carbery,et al.  Heat-flow monotonicity of Strichartz norms , 2008, 0809.4783.

[13]  G. Negro A sharpened Strichartz inequality for the wave equation , 2018, 1802.04114.

[14]  B. Pausader,et al.  The profile decomposition for the hyperbolic Schr\"odinger equation. , 2017, 1708.08014.

[15]  T. Ozawa,et al.  A Sharp Bilinear Estimate for the Klein–Gordon Equation in ℝ1+1 , 2014 .

[16]  E. Carneiro,et al.  Gaussians never extremize Strichartz inequalities for hyperbolic paraboloids , 2019, 1911.11796.

[17]  E. Carneiro,et al.  Sharp mixed norm spherical restriction , 2017, Advances in Mathematics.

[18]  Emanuel Carneiro,et al.  Extremizers for adjoint Fourier restriction on hyperboloids: the higher dimensional case , 2018, Indiana University Mathematics Journal.

[19]  W. Beckner Inequalities in Fourier analysis , 1975 .

[20]  M. Kunze On the Existence of a Maximizer for the Strichartz Inequality , 2003 .

[21]  Nonexistence of extremals for the adjoint restriction inequality on the hyperboloid , 2011, 1108.6324.

[22]  Diogo Oliveira e Silva,et al.  Smoothness of solutions of a convolution equation of restricted type on the sphere , 2019, Forum of Mathemetics, Sigma.

[23]  D. O. Silva,et al.  Global maximizers for adjoint Fourier restriction inequalities on low dimensional spheres , 2019, Journal of Functional Analysis.

[24]  Felipe Gonçalves Orthogonal Polynomials and Sharp Estimates for the Schrödinger Equation , 2019 .

[25]  E. Carneiro,et al.  A sharp trilinear inequality related to Fourier restriction on the circle , 2015, 1509.06674.

[26]  René Quilodran,et al.  On extremizing sequences for the adjoint restriction inequality on the cone , 2011, J. Lond. Math. Soc..

[27]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[28]  Shuanglin Shao On existence of extremizers for the Tomas-Stein inequality for $S^1$ , 2015, 1507.04302.

[29]  Some Sharp Restriction Inequalities on the Sphere , 2014, 1404.1106.

[30]  L. Vega,et al.  Bilinear identities involving the k-plane transform and Fourier extension operators , 2019, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  E. Carneiro A Sharp Inequality for the Strichartz Norm , 2008, 0809.4054.

[32]  Chris Jeavons A sharp bilinear estimate for the Klein--Gordon equation in arbitrary space-time dimensions , 2013, Differential and Integral Equations.

[33]  E. Carneiro,et al.  Extremizers for Fourier restriction on hyperboloids , 2017, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[34]  N. Bez,et al.  A sharp Strichartz estimate for the wave equation with data in the energy space , 2011, 1101.1447.

[35]  Dirk Hundertmark,et al.  Analyticity of extremizers to the Airy–Strichartz inequality , 2010, 1101.0012.

[36]  Vadim Zharnitsky,et al.  On sharp Strichartz inequalities in low dimensions , 2006 .

[37]  R. Quilodran,et al.  A comparison principle for convolution measures with applications , 2018, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  Michael Christ,et al.  Existence of Extremals for a Fourier Restriction Inequality , 2010, 1006.4319.

[39]  D. Foschi,et al.  University of Birmingham Some recent progress on sharp Fourier restriction theory , 2017 .

[40]  J. Ramos A refinement of the Strichartz inequality for the wave equation with applications , 2012 .

[41]  C. Thiele,et al.  Band-Limited Maximizers for a Fourier Extension Inequality on the Circle , 2018, Experimental Mathematics.

[42]  Michael Christ,et al.  On the extremizers of an adjoint Fourier restriction inequality , 2010, 1006.4318.

[43]  Haiyong Wang,et al.  On the Optimal Estimates and Comparison of Gegenbauer Expansion Coefficients , 2014, SIAM J. Numer. Anal..

[44]  Jonathan Bennett,et al.  Flow monotonicity and Strichartz inequalities , 2014, 1406.3577.

[45]  Estimates for certain integrals of products of six Bessel functions , 2015, 1509.06309.