A Neutral‐pH Aqueous Redox Flow Battery Based on Sustainable Organic Electrolytes

[1]  Wentao Yu,et al.  Reacquainting the Sudden-Death and Reaction Routes of Li-O2 Batteries by Ex Situ Observation of Li2O2 Distribution Inside a Highly Ordered Air Electrode. , 2022, Nano letters.

[2]  Fengming Chu,et al.  Analysis of Electrode Configuration Effects on Mass Transfer and Organic Redox Flow Battery Performance , 2022, Industrial & Engineering Chemistry Research.

[3]  M. Ulaganathan,et al.  Modified Viologen as an Efficient Anolyte for Aqueous Organic Redox Flow Batteries , 2022, Materials Letters.

[4]  Kara E. Rodby,et al.  Untapped Potential: The Need and Opportunity for High-Voltage Aqueous Redox Flow Batteries , 2022, ACS Energy Letters.

[5]  P. Fischer,et al.  Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review , 2022, Molecules.

[6]  Q. Qu,et al.  Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries , 2022, Energy Materials.

[7]  Xianfeng Li,et al.  Organic Electrolytes for pH‐Neutral Aqueous Organic Redox Flow Batteries , 2021, Advanced Functional Materials.

[8]  D. Espinosa,et al.  Unfolding the Vanadium Redox Flow Batteries: An indeep perspective on its components and current operation challenges , 2021, Journal of Energy Storage.

[9]  M. Winter,et al.  Supramolecular Viologen–Cyclodextrin Electrolytes for Aqueous Organic Redox Flow Batteries , 2021, ACS Applied Energy Materials.

[10]  Jiangxuan Song,et al.  Spatial Structure Regulation: A Rod-Shaped Viologen Enables Long Lifetime in Aqueous Redox Flow Batteries. , 2021, Angewandte Chemie.

[11]  P. Umari,et al.  Artificial photosynthesis: photoanodes based on polyquinoid dyes onto mesoporous tin oxide surface , 2021, Photochemical & Photobiological Sciences.

[12]  J. Harb,et al.  An Asymmetric Viologen-Based Negolyte with a Low Redox Potential for Neutral Aqueous Redox Flow Batteries , 2021 .

[13]  Yongdan Li,et al.  Ferrocene/Phthalimide Ionic Bipolar Redox-Active Molecule for Symmetric Nonaqueous Redox Flow Batteries , 2021, ACS Applied Energy Materials.

[14]  Chuankun Jia,et al.  Simple-Synthesized Sulfonated Ferrocene Ammonium for Aqueous Redox Flow Batteries , 2021, ACS Applied Energy Materials.

[15]  Zhiling Zhao,et al.  Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications. , 2021, Inorganic chemistry.

[16]  S. Licoccia,et al.  Redox-active coordination polymers as bifunctional electrolytes in slurry-based aqueous batteries at neutral pH , 2021 .

[17]  Yi‐Chun Lu,et al.  Viologen radical stabilization by molecular spectators for aqueous organic redox flow batteries , 2021, Nano Energy.

[18]  B. Floris,et al.  Similar, Yet Different: Long-Range Metal-Metal Coupling and Electron-Transfer Processes in Metal-Free 5,10,15,20-Tetra(ruthenocenyl)porphyrin. , 2021, Inorganic chemistry.

[19]  P. Galloni,et al.  Unveiling KuQuinone Redox Species: An Electrochemical and Computational Cross Study , 2021, Journal of Organic Chemistry.

[20]  M. Winter,et al.  Host‐Guest Interactions Enhance the Performance of Viologen Electrolytes for Aqueous Organic Redox Flow Batteries , 2021 .

[21]  Guoxiu Wang,et al.  Recent research on emerging organic electrode materials for energy storage , 2021, Energy Materials.

[22]  Z. Fu,et al.  Viologen-Decorated TEMPO for Neutral Aqueous Organic Redox Flow Batteries , 2021, Energy Material Advances.

[23]  R. Gordon,et al.  Functioning water-insoluble ferrocenes for aqueous organic flow battery via host-guest inclusion. , 2020, ChemSusChem.

[24]  Zhengjin Yang,et al.  Designer Ferrocene Catholyte for Aqueous Organic Flow Batteries. , 2020, ChemSusChem.

[25]  Zhiling Zhao,et al.  Investigations Into Aqueous Redox Flow Batteries Based on Ferrocene Bisulfonate , 2020 .

[26]  Guihua Yu,et al.  Molecular Engineering of Azobenzene‐Based Anolytes Towards High‐Capacity Aqueous Redox Flow Batteries , 2020, Angewandte Chemie.

[27]  U. Schubert,et al.  Aqueous Redox Flow Battery Suitable for High Temperature Applications Based on a Tailor‐Made Ferrocene Copolymer , 2020, Advanced Energy Materials.

[28]  Kathryn E. Toghill,et al.  Characterisation of the ferrocene/ferrocenium ion redox couple as a model chemistry for non-aqueous redox flow battery research , 2020 .

[29]  Guihua Yu,et al.  Molecular Engineering of Azobenzene-based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries. , 2020, Angewandte Chemie.

[30]  Qing Wang,et al.  A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery , 2020 .

[31]  J. Jeon,et al.  A bromide-ligand ferrocene derivative redox species with high reversibility and electrochemical stability for aqueous redox flow batteries , 2020 .

[32]  J. Chai,et al.  A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled Ultrastability and Crossover Suppression. , 2020, ChemSusChem.

[33]  Yukari Sato,et al.  Redox-Flow Battery Operating in Neutral and Acidic Environments with Multielectron-Transfer-Type Viologen Molecular Assembly , 2020 .

[34]  Zhengjin Yang,et al.  Screening viologen derivatives for neutral aqueous organic redox flow battery. , 2020, ChemSusChem.

[35]  David G. Kwabi,et al.  Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. , 2020, Chemical reviews.

[36]  L. M. Mejía-Mendoza,et al.  Effect of Molecular Structure of Quinones and Carbon Electrode Surfaces on the Interfacial Electron Transfer Process , 2020 .

[37]  J. Hjelm,et al.  Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries , 2019, ACS Materials Letters.

[38]  B. Floris,et al.  Modulating electron transfer in ferrocene-naphthoquinone dyads: New insights in parameters influencing ET efficiency , 2019, Journal of Organometallic Chemistry.

[39]  K. Artyushkova,et al.  Impact of Corrosion Conditions on Carbon Paper Electrode Morphology and the Performance of a Vanadium Redox Flow Battery , 2019, Journal of The Electrochemical Society.

[40]  David G. Kwabi,et al.  Alkaline Quinone Flow Battery with Long Lifetime at pH 12 , 2018, Joule.

[41]  Seung M. Oh,et al.  N-ferrocenylphthalimide; A single redox couple formed by attaching a ferrocene moiety to phthalimide for non-aqueous flow batteries , 2018, Journal of Power Sources.

[42]  U. Schubert,et al.  An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte , 2018 .

[43]  T. L. Liu,et al.  A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage , 2018 .

[44]  T. Turek,et al.  Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – A review , 2018 .

[45]  T. Liu,et al.  A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. , 2018, Angewandte Chemie.

[46]  T. L. Liu,et al.  Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries , 2017 .

[47]  Xiongwei Wu,et al.  Theoretical Investigation into Suitable Pore Sizes of Membranes for Vanadium Redox Flow Batteries , 2017 .

[48]  R. Acres,et al.  Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes , 2017 .

[49]  R. Gordon,et al.  A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention , 2017 .

[50]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[51]  Wei Wang,et al.  A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4‐HO‐TEMPO Catholyte , 2016 .

[52]  Ketack Kim,et al.  Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. , 2015, ChemSusChem.

[53]  Timothy Gareth John Jones,et al.  Ferrocene sulfonates as electrocatalysts for sulfide detection , 2006 .

[54]  C. L. Bird,et al.  Electrochemistry of the viologens , 1981 .

[55]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .