Flat DHT Routing Topologies

In this chapter, we survey existing classical DHTs grouped according to their topologies. We describe basic architectures for efficient overlay routing and corresponding classes of graphs. We start with introducing Content Addressable Network (CAN) as an example of Torus topology. It is followed by Chord, Kademlia and Accordion as DHTs using the Ring topology. Pastry, Tapestry and Bamboo DHTs are grouped under the PRR tree topology. Trie and balanced trees are represented by P-Grid, skip graphs. Finally, we present several DHTs that are using De Bruijn and Kautz graphs, Butterfly and O(1)-hop topologies. These topologies differ in how they collect local information in a DHT node about the global network. The next chapter will show how these architectures can be generalized using hierarchical approach.

[1]  Sandhya Dwarkadas,et al.  Low traffic overlay networks with large routing tables , 2005, SIGMETRICS '05.

[2]  Cláudio L. Amorim,et al.  D1HT: a distributed one hop hash table , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[3]  J. Ian Munro,et al.  Deterministic SkipNet , 2004, Inf. Process. Lett..

[4]  Jie Wu,et al.  FISSIONE: a scalable constant degree and low congestion DHT scheme based on Kautz graphs , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[5]  Karl Aberer,et al.  On de Bruijn routing in distributed hash tables: there and back again , 2004 .

[6]  Ittai Abraham,et al.  Papillon: Greedy Routing in Rings , 2005, DISC.

[7]  Dmitri Loguinov,et al.  Graph-theoretic analysis of structured peer-to-peer systems: routing distances and fault resilience , 2005, TNET.

[8]  John Kubiatowicz,et al.  Handling churn in a DHT , 2004 .

[9]  Amos Fiat,et al.  Censorship resistant peer-to-peer content addressable networks , 2002, SODA '02.

[10]  Laurent Viennot,et al.  Broose: a practical distributed hashtable based on the de-Bruijn topology , 2004 .

[11]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[12]  James Aspnes,et al.  The expansion and mixing time of skip graphs with applications , 2005, SPAA '05.

[13]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM 2001.

[14]  Yunhao Liu,et al.  BAKE: A Balanced Kautz Tree Structure for Peer-to-Peer Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[15]  Pierre Fraigniaud,et al.  D2B: A de Bruijn based content-addressable network , 2006, Theor. Comput. Sci..

[16]  Moni Naor,et al.  A Simple Fault Tolerant Distributed Hash Table , 2003, IPTPS.

[17]  James Aspnes,et al.  Skip graphs , 2003, SODA '03.

[18]  Gurmeet Singh Manku,et al.  Routing networks for distributed hash tables , 2003, PODC '03.

[19]  David R. Karger,et al.  Koorde: A Simple Degree-Optimal Distributed Hash Table , 2003, IPTPS.

[20]  Cláudio L. Amorim,et al.  Peer-to-Peer Single Hop Distributed Hash Tables , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[21]  Robert Tappan Morris,et al.  Bandwidth-efficient management of DHT routing tables , 2005, NSDI.

[22]  Ben Y. Zhao,et al.  Tapestry: a resilient global-scale overlay for service deployment , 2004, IEEE Journal on Selected Areas in Communications.

[23]  Guihai Chen,et al.  Cycloid: a constant-degree and lookup-efficient P2P overlay network , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[24]  Karl Aberer,et al.  P-Grid: a self-organizing structured P2P system , 2003, SGMD.

[25]  Moni Naor,et al.  Viceroy: a scalable and dynamic emulation of the butterfly , 2002, PODC '02.

[26]  Michael J. Freedman,et al.  Efficient Peer-to-Peer Lookup Based on a Distributed Trie , 2002, IPTPS.

[27]  R. Rodrigues,et al.  Full-Information Lookups for Peer-to-Peer Overlays , 2008, IEEE Transactions on Parallel and Distributed Systems.

[28]  Abhishek Kumar,et al.  On the fundamental tradeoffs between routing table size and network diameter in peer-to-peer networks , 2004, IEEE J. Sel. Areas Commun..

[29]  Michael B. Jones,et al.  SkipNet: A Scalable Overlay Network with Practical Locality Properties , 2003, USENIX Symposium on Internet Technologies and Systems.

[30]  Gade Krishna,et al.  A scalable peer-to-peer lookup protocol for Internet applications , 2012 .

[31]  David Mazières,et al.  Kademlia: A Peer-to-Peer Information System Based on the XOR Metric , 2002, IPTPS.

[32]  Jie Wu,et al.  Moore: An Extendable Peer-to-Peer Network Based on Incomplete Kautz Digraph with Constant Degree , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[33]  Rajmohan Rajaraman,et al.  Accessing Nearby Copies of Replicated Objects in a Distributed Environment , 1997, SPAA '97.

[34]  Yiming Zhang,et al.  SKY: efficient peer-to-peer networks based on distributed Kautz graphs , 2009, Science in China Series F: Information Sciences.

[35]  Stefan Saroiu,et al.  Dynamically Fault-Tolerant Content Addressable Networks , 2002, IPTPS.

[36]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.