Irregular heartbeat classification using Kronecker Product Equations

Cardiac arrhythmia or irregular heartbeats are an important feature to assess the risk on sudden cardiac death and other cardiac disorders. Automatic classification of irregular heartbeats is therefore an important part of ECG analysis. We propose a tensor-based method for single- and multi-channel irregular heartbeat classification. The method tensorizes the ECG data matrix by segmenting each signal beat-by-beat and then stacking the result into a third-order tensor with dimensions channel × time × heartbeat. We use the multilinear singular value decomposition to model the obtained tensor. Next, we formulate the classification task as the computation of a Kronecker Product Equation. We apply our method on the INCART dataset, illustrating promising results.

[1]  Liqing Zhang,et al.  Cardiology knowledge free ECG feature extraction using generalized tensor rank one discriminant analysis , 2014, EURASIP J. Adv. Signal Process..

[2]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[3]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[4]  Sabine Van Huffel,et al.  Detection of irregular heartbeats using tensors , 2015, 2015 Computing in Cardiology Conference (CinC).

[5]  Nico Vervliet,et al.  Linear systems with a canonical polyadic decomposition constrained solution: Algorithms and applications , 2018, Numer. Linear Algebra Appl..

[6]  Lieven De Lathauwer,et al.  Stochastic and Deterministic Tensorization for Blind Signal Separation , 2015, LVA/ICA.

[7]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[8]  Dimitrios I. Fotiadis,et al.  An arrhythmia classification system based on the RR-interval signal , 2005, Artif. Intell. Medicine.

[9]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[10]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[11]  Dan Schonfeld,et al.  Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Nico Vervliet,et al.  Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.

[13]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[14]  M Llamedo,et al.  Analysis of 12-lead classification models for ECG classification , 2010, 2010 Computing in Cardiology.

[15]  Nico Vervliet,et al.  Tensorlab 3.0 — Numerical optimization strategies for large-scale constrained and coupled matrix/tensor factorization , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.