A Short Introduction to Topological Quantum Computation

This review presents an entry-level introduction to topological quantum computation -- quantum computing with anyons. We introduce anyons at the system-independent level of anyon models and discuss the key concepts of protected fusion spaces and statistical quantum evolutions for encoding and processing quantum information. Both the encoding and the processing are inherently resilient against errors due to their topological nature, thus promising to overcome one of the main obstacles for the realisation of quantum computers. We outline the general steps of topological quantum computation, as well as discuss various challenges faced by it. We also review the literature on condensed matter systems where anyons can emerge. Finally, the appearance of anyons and employing them for quantum computation is demonstrated in the context of a simple microscopic model -- the topological superconducting nanowire -- that describes the low-energy physics of several experimentally relevant settings. This model supports localised Majorana zero modes that are the simplest and the experimentally most tractable types of anyons that are needed to perform topological quantum computation.

[1]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[2]  Meng Cheng,et al.  Topological protection of Majorana qubits , 2011, 1112.3662.

[3]  J. Myrheim,et al.  On the theory of identical particles , 1977 .

[4]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[5]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[6]  Ville Lahtinen,et al.  Perturbed vortex lattices and the stability of nucleated topological phases , 2014 .

[7]  Matthias Troyer,et al.  Interacting anyons in topological quantum liquids: the golden chain. , 2007, Physical review letters.

[8]  N. E. Bonesteel,et al.  Resources required for topological quantum factoring , 2010, 1002.0537.

[9]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[10]  P. Brouwer,et al.  Andreev reflection from noncentrosymmetric superconductors and Majorana bound-state generation in half-metallic ferromagnets , 2010, 1011.5839.

[11]  I. C. Fulga,et al.  Effects of disorder on Coulomb-assisted braiding of Majorana zero modes , 2013 .

[12]  Robert-Jan Slager,et al.  The space group classification of topological band-insulators , 2012, Nature Physics.

[13]  James M. Murray,et al.  Majorana bands, Berry curvature, and thermal Hall conductivity in the vortex state of a chiral p -wave superconductor , 2015, 1506.06614.

[14]  David P. DiVincenzo,et al.  Topological Quantum Computing , 2017, 1701.05052.

[15]  Parsa Bonderson,et al.  Implementing arbitrary phase gates with Ising anyons. , 2009, Physical review letters.

[16]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[17]  Liang Fu,et al.  Superconducting proximity effect and Majorana fermions at the surface , 2008 .

[18]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[19]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[20]  Xin Wan,et al.  Constructing functional braids for low-leakage topological quantum computing , 2008, 0802.4213.

[21]  Parsa Bonderson Splitting the topological degeneracy of non-Abelian anyons. , 2009, Physical review letters.

[22]  Jiannis K. Pachos,et al.  Quantum memories at finite temperature , 2014, 1411.6643.

[23]  Zhoushen Huang,et al.  Fate and remnants of Majorana zero modes in a quantum wire array , 2014 .

[24]  Matthias Troyer,et al.  A Short Introduction to Fibonacci Anyon Models , 2008, 0902.3275.

[25]  Guang-Can Guo,et al.  Simulating the exchange of Majorana zero modes with a photonic system , 2014, Nature Communications.

[26]  Parsa Bonderson,et al.  Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states , 2010, 1008.5194.

[27]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[28]  Yi Zhang,et al.  Quasiparticle statistics and braiding from ground state entanglement , 2011, 1111.2342.

[29]  A. Akhmerov,et al.  Braiding of non-Abelian anyons using pairwise interactions , 2012, Physical Review A.

[30]  C. Beenakker,et al.  Coulomb-assisted braiding of Majorana fermions in a Josephson junction array , 2011, 1111.6001.

[31]  Frank Wilczek,et al.  Fractional Statistics and the Quantum Hall Effect , 1984 .

[32]  N. Cooper,et al.  Topological Kondo effect with Majorana fermions. , 2012, Physical review letters.

[33]  Jiannis K. Pachos,et al.  Entropic manifestations of topological order in three dimensions , 2016 .

[34]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[35]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[36]  Jiannis K. Pachos,et al.  Entropic Topological Invariants in Three Dimensions , 2015 .

[37]  L Li,et al.  Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. , 2015, Nature Materials.

[38]  Jiannis K. Pachos,et al.  Lifetime of topological quantum memories in thermal environment , 2012, 1209.2940.

[39]  Daniel Loss,et al.  Decoherence of Majorana qubits by noisy gates , 2012, 1206.0743.

[40]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[41]  R. Egger,et al.  Majorana box qubits , 2016, 1609.01697.

[42]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[43]  Nathan Seiberg,et al.  LECTURES ON RCFT , 1989 .

[44]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[45]  Paul Ginsparg,et al.  Non-Abelian braiding of lattice bosons. , 2011, Physical review letters.

[46]  B. Andrei Bernevig,et al.  Fractional Chern Insulator , 2011, 1105.4867.

[47]  C. M. Marcus,et al.  Parity lifetime of bound states in a proximitized semiconductor nanowire , 2015, Nature Physics.

[48]  David J. Clarke,et al.  Improved phase-gate reliability in systems with neutral Ising anyons , 2010, 1009.0302.

[49]  Benjamin J. Brown,et al.  Entropic barriers for two-dimensional quantum memories. , 2013, Physical review letters.

[50]  Maissam Barkeshli,et al.  Twist defects and projective non-Abelian braiding statistics , 2012, 1208.4834.

[51]  Giuseppe Mussardo,et al.  Topological quantum gate construction by iterative pseudogroup hashing , 2010, 1009.5808.

[52]  Diptiman Sen,et al.  Quench dynamics and parity blocking in Majorana wires , 2014, 1412.5255.

[53]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[54]  X. G. Wen Ground state degeneracy of the FQH states in presence of random potential and on high genus Riemann surfaces † , 2001 .

[55]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[56]  Jian Li,et al.  Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor , 2014, Science.

[57]  L. Cincio,et al.  Characterizing topological order by studying the ground States on an infinite cylinder. , 2012, Physical review letters.

[58]  D. Loss,et al.  Majorana qubit decoherence by quasiparticle poisoning , 2012, 1204.3326.

[59]  M. Franz,et al.  Electronic structure of topological superconductors in the presence of a vortex lattice , 2015, 1506.05084.

[60]  Jiannis K. Pachos,et al.  Non-Abelian statistics as a Berry phase in exactly solvable models , 2009, 0901.3674.

[61]  S. Das Sarma,et al.  Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor-semiconductor nanowire , 2012 .

[62]  C. Castelnovo,et al.  Entanglement and topological entropy of the toric code at finite temperature , 2007, 0704.3616.

[63]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[64]  J. Ignacio Cirac,et al.  Robustness of quantum memories based on Majorana zero modes , 2012, 1212.4778.

[65]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[66]  Wen,et al.  Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. , 1990, Physical review. B, Condensed matter.

[67]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[68]  Ernst Meyer,et al.  Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface , 2015, npj Quantum Information.

[69]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[70]  Leo P. Kouwenhoven,et al.  One minute parity lifetime of a NbTiN Cooper-pair transistor , 2015, Nature Physics.

[71]  Alexander Altland,et al.  Multiterminal Coulomb-Majorana junction. , 2012, Physical review letters.

[72]  S. Simon,et al.  Braid topologies for quantum computation. , 2005, Physical review letters.

[73]  P. Zoller,et al.  Topology by dissipation in atomic quantum wires , 2011, 1105.5947.

[74]  Jason Alicea,et al.  Classification of spin liquids on the square lattice with strong spin-orbit coupling , 2014, 1407.4124.

[75]  Jiri Vala,et al.  Rigorous calculations of non-Abelian statistics in the Kitaev honeycomb model , 2011, 1103.3061.

[76]  Tilman Esslinger,et al.  Experimental realization of the topological Haldane model with ultracold fermions , 2014, Nature.

[77]  D. Perez-Garcia,et al.  Thermal states of anyonic systems , 2008, 0812.4975.

[78]  Xin Wan,et al.  Exploiting geometric degrees of freedom in topological quantum computing , 2008, 0812.2414.

[79]  Charles M. Marcus,et al.  Realizing Majorana zero modes in superconductor-semiconductor heterostructures , 2018 .

[80]  V. Umansky,et al.  Direct observation of a fractional charge , 1997, Nature.

[81]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[82]  M. Baraban,et al.  Numerical analysis of quasiholes of the moore-read wave function. , 2009, Physical review letters.

[83]  Daniel Loss,et al.  Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions , 2012, 1207.5907.

[84]  S. Simon,et al.  Monte Carlo evaluation of non-Abelian statistics. , 2003, Physical review letters.

[85]  C. Marcus,et al.  Milestones toward Majorana-based quantum computing , 2015, 1511.05153.

[86]  Matthias Troyer,et al.  Collective states of interacting anyons, edge states, and the nucleation of topological liquids. , 2008, Physical review letters.

[87]  Simon Trebst,et al.  Classification of gapless Z 2 spin liquids in three-dimensional Kitaev models , 2015, 1511.05569.

[88]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.

[89]  Haitan Xu,et al.  Unified approach to topological quantum computation with anyons: From qubit encoding to Toffoli gate , 2010, 1001.4085.

[90]  Gil Refael,et al.  Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states , 2012, 1204.5733.

[91]  S. Vishveshwara,et al.  Topological blocking in quantum quench dynamics , 2013, 1312.6387.

[92]  James R. Wootton,et al.  Bringing order through disorder: localization of errors in topological quantum memories. , 2011, Physical review letters.

[93]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[94]  Matthias Troyer,et al.  Two-dimensional quantum liquids from interacting non-Abelian anyons , 2010, 1003.3453.

[95]  X. Qi,et al.  Topological superconducting phase and Majorana fermions in half-metal/superconductor heterostructures , 2010, 1011.6422.

[96]  Paolo Zanardi,et al.  QUANTUM HOLONOMIES FOR QUANTUM COMPUTING , 2000, quant-ph/0007110.

[97]  S Das Sarma,et al.  Interplay of disorder and interaction in Majorana quantum wires. , 2012, Physical review letters.

[98]  C. W. J. Beenakker,et al.  Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling , 2011 .

[99]  Yogesh Singh,et al.  Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. , 2011, Physical review letters.

[100]  Michael H. Freedman,et al.  Universal Geometric Path to a Robust Majorana Magic Gate , 2015, 1511.05161.

[101]  Simeng Yan,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.

[102]  Chapter 6 Topological quantum computation away from the ground state with Majorana fermions , 2011 .

[103]  Sergey Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .

[104]  Jason Alicea,et al.  Majorana fermions in a tunable semiconductor device , 2009, 0912.2115.

[105]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[106]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[107]  Maissam Barkeshli,et al.  Physical Architecture for a Universal Topological Quantum Computer based on a Network of Majorana Nanowires , 2015, 1509.07135.

[108]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[109]  Xiao-Gang Wen,et al.  Symmetry-Protected Topological Orders in Interacting Bosonic Systems , 2012, Science.

[110]  C-E Bardyn,et al.  Majorana-like modes of light in a one-dimensional array of nonlinear cavities. , 2012, Physical review letters.

[111]  B. Bauer,et al.  Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator , 2014, Nature Communications.

[112]  Reinhard F. Werner,et al.  Implementation of Clifford gates in the Ising-anyon topological quantum computer , 2008, 0812.2338.

[113]  Daniel Loss,et al.  Majorana Fermions in Ge/Si Hole Nanowires , 2014, 1409.8645.

[114]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[115]  J. C. Budich,et al.  Failure of protection of Majorana based qubits against decoherence , 2011, 1111.1734.

[116]  S. Das Sarma,et al.  Dimensional crossover in spin-orbit-coupled semiconductor nanowires with induced superconducting pairing , 2012, 1208.4136.

[117]  Xiao-Gang Wen,et al.  Topological orders and edge excitations in fractional quantum hall states , 1995, cond-mat/9506066.

[118]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[119]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[120]  C. M. Marcus,et al.  Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover , 2013, 1303.2407.

[121]  N. Read,et al.  Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level , 1998, cond-mat/9809384.

[122]  Titus Neupert,et al.  Manipulating Majorana zero modes on atomic rings with an external magnetic field , 2016, Nature Communications.

[123]  P. Brouwer,et al.  Probability distribution of Majorana end-state energies in disordered wires. , 2011, Physical review letters.

[124]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[125]  James R. Wootton,et al.  Error Correction for Non-Abelian Topological Quantum Computation , 2014 .

[126]  Claudio Chamon,et al.  Toric-boson model: Toward a topological quantum memory at finite temperature , 2008, 0812.4622.

[127]  Matthew P. A. Fisher,et al.  Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure , 2013, 1307.4403.

[128]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[129]  Xiao-Gang Wen,et al.  Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory , 2012, 1201.2648.

[130]  V. J. Goldman,et al.  Resonant Tunneling in the Quantum Hall Regime: Measurement of Fractional Charge , 1995, Science.

[131]  Leon Balents,et al.  Identifying topological order by entanglement entropy , 2012, Nature Physics.

[132]  James R. Wootton,et al.  Enhanced thermal stability of the toric code through coupling to a bosonic bath , 2013, 1309.0621.

[133]  B Andrei Bernevig,et al.  Braiding non-Abelian quasiholes in fractional quantum Hall states. , 2014, Physical review letters.

[134]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[135]  M. Franz,et al.  Colloquium : Majorana fermions in nuclear, particle, and solid-state physics , 2014, 1403.4976.

[136]  M. Freedman,et al.  Measurement-only topological quantum computation. , 2008, Physical review letters.

[137]  N. Read,et al.  Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p(x) + ip(y) paired superfluids , 2008, 0805.2507.

[138]  Michael Hell,et al.  Two-Dimensional Platform for Networks of Majorana Bound States. , 2016, Physical review letters.

[139]  H. Weinfurter,et al.  Revealing anyonic features in a toric code quantum simulation , 2007, 0710.0895.

[140]  Daniel Loss,et al.  Topological superconductivity and Majorana fermions in RKKY systems. , 2013, Physical review letters.

[141]  H. Büchler,et al.  Majorana modes and p-wave superfluids for fermionic atoms in optical lattices , 2014, Nature Communications.

[142]  Liang Jiang,et al.  Majorana fermions in equilibrium and in driven cold-atom quantum wires. , 2011, Physical review letters.

[143]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[144]  Alexander Wietek,et al.  Chiral Spin Liquids in Triangular-Lattice SU(N) Fermionic Mott Insulators with Artificial Gauge Fields. , 2016, Physical review letters.

[145]  Shih-Hao Ho,et al.  Decoherence patterns of topological qubits from Majorana modes , 2014, 1406.6249.

[146]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[147]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[148]  Zhenghan Wang,et al.  On Classification of Modular Tensor Categories , 2007, 0712.1377.

[149]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[150]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[151]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[152]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[153]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[154]  Meng Cheng,et al.  Splitting of Majorana-fermion modes due to intervortex tunneling in a p(x) + ip(y) superconductor. , 2009, Physical review letters.

[155]  Jiannis K. Pachos,et al.  Holographic correspondence in topological superconductors , 2015, 1507.03236.

[156]  L. Landau Fermionic quantum computation , 2000 .

[157]  Jason Alicea,et al.  Exotic non-Abelian anyons from conventional fractional quantum Hall states , 2012, Nature Communications.

[158]  Matthew B. Hastings,et al.  Topological entanglement entropy of a Bose-Hubbard spin liquid , 2011, 1102.1721.

[159]  A. R. Akhmerov Topological quantum computation away from the ground state using Majorana fermions , 2010 .

[160]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[161]  Parsa Bonderson Measurement-only topological quantum computation via tunable interactions , 2012, 1210.7929.

[162]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[163]  B. Bernevig,et al.  Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor , 2013, 1303.6363.

[164]  N. R. Cooper,et al.  Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms , 2014, Nature Physics.

[165]  C. W. J. Beenakker,et al.  Flux-controlled quantum computation with Majorana fermions , 2013, 1303.4379.

[166]  Tilman Esslinger,et al.  Experimental realization of the topological Haldane model , 2015 .

[167]  Ville Lahtinen,et al.  Interacting non-Abelian anyons as Majorana fermions in the honeycomb lattice model , 2011, 1103.0238.

[168]  S. Trebst,et al.  Weyl spin liquids. , 2014, Physical review letters.

[169]  Jiannis K. Pachos,et al.  Topological liquid nucleation induced by vortex-vortex interactions in Kitaev's honeycomb model , 2011, 1111.3296.

[170]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[171]  S. Tewari,et al.  Controlling non-Abelian statistics of Majorana fermions in semiconductor nanowires , 2010, 1012.0561.

[172]  Meng Cheng,et al.  Nonadiabatic effects in the braiding of non-Abelian anyons in topological superconductors , 2011, 1106.2549.

[173]  Daniel Loss,et al.  Universal quantum computation with hybrid spin-Majorana qubits , 2016, 1602.06923.

[174]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[175]  Anna Keselman,et al.  Topological Superconductivity in a Planar Josephson Junction , 2016, 1609.09482.

[176]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[177]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[178]  Jiannis K. Pachos,et al.  Introduction to Topological Quantum Computation , 2012 .

[179]  C. J. Palmstrøm,et al.  Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure , 2016, Nature Communications.

[180]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[181]  J. Vala,et al.  Kitaev spin models from topological nanowire networks , 2013, 1309.2447.

[182]  A. Altland,et al.  Roadmap to Majorana surface codes , 2016, 1606.08408.

[183]  Zhijun Wang,et al.  Hourglass fermions , 2016, Nature.

[184]  L. N. Pfeiffer,et al.  Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations , 2008, Proceedings of the National Academy of Sciences.

[185]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[186]  Yi Zhang,et al.  General procedure for determining braiding and statistics of anyons using entanglement interferometry , 2014, 1412.0677.

[187]  Giuseppe Mussardo,et al.  Topological quantum hashing with the icosahedral group. , 2010, Physical review letters.