Microsystems for biofilm characterization and sensing – A review

[1]  J. Greener,et al.  Microfluidic bioanalytical flow cells for biofilm studies: a review. , 2021, The Analyst.

[2]  Lucy Reynolds,et al.  The Role of Antimicrobial Restrictions in Bacterial Resistance Control: A Systematic Literature Review. , 2020, The Journal of hospital infection.

[3]  Ryan C. Huiszoon,et al.  In Situ Sensor Electrode Patterning on Urinary Catheters towards Infection Prevention , 2019, 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII).

[4]  Marco Carminati,et al.  Flexible Impedance Sensor for In-Line Monitoring of Water and Beverages , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[5]  Ryan C. Huiszoon,et al.  Flexible Platform for In Situ Impedimetric Detection and Bioelectric Effect Treatment of Escherichia Coli Biofilms , 2019, IEEE Transactions on Biomedical Engineering.

[6]  Olga Fysun,et al.  Electrochemical detection of a P. polymyxa biofilm and CIP cleaning solutions by voltammetric microsensors , 2019, Engineering in Agriculture, Environment and Food.

[7]  Marco Carminati,et al.  Development of a Miniaturized and Selective Impedance Sensor for Real-Time Slime Monitoring in Pipes and Tanks , 2019, Sensors and Actuators B: Chemical.

[8]  A. Mira,et al.  Development of an in vitro system to study oral biofilms in real time through impedance technology: validation and potential applications , 2019, Journal of oral microbiology.

[9]  Feiyun Cui,et al.  Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip. , 2018, Biosensors & bioelectronics.

[10]  H. Steenackers,et al.  Impedimetric fingerprinting and structural analysis of isogenic E. coli biofilms using multielectrode arrays , 2018, Sensors and Actuators B: Chemical.

[11]  S. Arana,et al.  Antibody biosensors for spoilage yeast detection based on impedance spectroscopy. , 2018, Biosensors & bioelectronics.

[12]  D. Fioretto,et al.  High-contrast Brillouin and Raman micro-spectroscopy for simultaneous mechanical and chemical investigation of microbial biofilms. , 2017, Biophysical chemistry.

[13]  W. Bentley,et al.  An Integrated Microsystem for Real-Time Detection and Threshold-Activated Treatment of Bacterial Biofilms. , 2017, ACS applied materials & interfaces.

[14]  P. Szymczyk,et al.  Impedance Sensors Made in PCB and LTCC Technologies for Monitoring Growth and Degradation of Pseudomonal Biofilm , 2017 .

[15]  Pedro Castro,et al.  Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms , 2017, Sensors.

[16]  Anália Lourenço,et al.  Critical review on biofilm methods , 2017, Critical reviews in microbiology.

[17]  Marco Carminati,et al.  Emerging miniaturized technologies for airborne particulate matter pervasive monitoring , 2017 .

[18]  J. Greener,et al.  Hydrodynamic Effects on Biofilms at the Biointerface Using a Microfluidic Electrochemical Cell: Case Study of Pseudomonas sp. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[19]  V. Baelum,et al.  Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow , 2017, Journal of oral microbiology.

[20]  R. Ulber,et al.  Membrane Separated Flow Cell for Parallelized Electrochemical Impedance Spectroscopy and Confocal Laser Scanning Microscopy to Characterize Electro-Active Microorganisms , 2016 .

[21]  J. Greener,et al.  Through thick and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the effect of ionic strength. , 2016, Lab on a chip.

[22]  B. Guan,et al.  In-situ detection of electroactive biofilms using an electrochemical surface Plasmon resonance fiber-optic sensor , 2016 .

[23]  P. García,et al.  Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology , 2016, PloS one.

[24]  W. Bentley,et al.  Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment , 2016, Biomedical microdevices.

[25]  S. Rice,et al.  Biofilms: an emergent form of bacterial life , 2016, Nature Reviews Microbiology.

[26]  Xin Liu,et al.  Confocal Laser Scanning Microscopy-Compatible Microfluidic Membrane Flow Cell as a Nondestructive Tool for Studying Biofouling Dynamics on Forward Osmosis Membranes , 2016 .

[27]  Li Zhuang,et al.  Electrochemical Surface Plasmon Resonance Fiber-Optic Sensor: In Situ Detection of Electroactive Biofilms. , 2016, Analytical chemistry.

[28]  Raymond H. W. Lam,et al.  High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics. , 2016, Lab on a chip.

[29]  M. Mujika,et al.  Electrochemical Real-Time Analysis of Bacterial Biofilm Adhesion and Development by Means of Thin-Film Biosensors , 2016, IEEE Sensors Journal.

[30]  Andrew Berkovich,et al.  A surface acoustic wave biofilm sensor integrated with a treatment method based on the bioelectric effect , 2016 .

[31]  Kenneth L. Shepard,et al.  Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms , 2016, Nature Communications.

[32]  Nianbing Zhong,et al.  U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring , 2016, Biomedical optics express.

[33]  Sangjun Moon,et al.  A Microfluidic Approach to Investigating a Synergistic Effect of Tobramycin and Sodium Dodecyl Sulfate on Pseudomonas aeruginosa Biofilms , 2016, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[34]  Xuan Weng,et al.  Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms , 2015, Biotechnology and bioengineering.

[35]  B. Sanchez,et al.  Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy. , 2015, Bioelectrochemistry.

[36]  W. Bentley,et al.  Multi-depth valved microfluidics for biofilm segmentation , 2015 .

[37]  Songqin Liu,et al.  Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry. , 2015, Biomicrofluidics.

[38]  T. Schwartz,et al.  Multi-Channel Microfluidic Biosensor Platform Applied for Online Monitoring and Screening of Biofilm Formation and Activity , 2015, PloS one.

[39]  S. Arana,et al.  Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes. , 2014, Journal of microbiological methods.

[40]  Edgar D Goluch,et al.  Using surface plasmon resonance imaging to study bacterial biofilms. , 2014, Biomicrofluidics.

[41]  Suresh Neethirajan,et al.  A novel microfluidic wound model for testing antimicrobial agents against Staphylococcus pseudintermedius biofilms , 2014, Journal of Nanobiotechnology.

[42]  K. Stokes,et al.  Life under flow: A novel microfluidic device for the assessment of anti-biofilm technologies. , 2013, Biomicrofluidics.

[43]  F. Arizti,et al.  Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates , 2013 .

[44]  Reza Ghodssi,et al.  AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms , 2012, Applied Microbiology and Biotechnology.

[45]  S. Diggle,et al.  Bursting the bubble on bacterial biofilms: a flow cell methodology , 2012, Biofouling.

[46]  O. Geschke,et al.  Modular microfluidic system as a model of cystic fibrosis airways. , 2012, Biomicrofluidics.

[47]  Teodor Gotszalk,et al.  Evaluation of Pseudomonas aeruginosa biofilm formation using piezoelectric tuning fork mass sensors , 2012 .

[48]  Ian M. Marcus,et al.  Pseudomonas aeruginosa attachment on QCM-D sensors: the role of cell and surface hydrophobicities. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[49]  Hsuan-Chen Wu,et al.  An ALD aluminum oxide passivated Surface Acoustic Wave sensor for early biofilm detection , 2012 .

[50]  A. Jayaraman,et al.  A microfluidic device for high throughput bacterial biofilm studies. , 2012, Lab on a chip.

[51]  Manjunath Hegde,et al.  Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device , 2012, Nature Communications.

[52]  S. Mikkelsen,et al.  Cyclic biamperometry at micro-interdigitated electrodes. , 2011, Analytical chemistry.

[53]  Blanca H Lapizco-Encinas,et al.  Dielectrophoretic monitoring of microorganisms in environmental applications , 2011, Electrophoresis.

[54]  Thomas Hankemeier,et al.  Lab-on-a-chip technologies for massive parallel data generation in the life sciences: A review , 2011 .

[55]  M. Z. Abdullah,et al.  Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: recent developments. , 2011, Talanta.

[56]  Nor Azah Yusof,et al.  Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview , 2011, Sensors.

[57]  H. C. van der Mei,et al.  Acoustic sensing of the bacterium-substratum interface using QCM-D and the influence of extracellular polymeric substances. , 2011, Journal of colloid and interface science.

[58]  W. Bentley,et al.  Development and validation of a microfluidic reactor for biofilm monitoring via optical methods , 2011 .

[59]  Hai Jiang,et al.  Microfluidic whole-blood immunoassays , 2011 .

[60]  T. Tolker-Nielsen,et al.  Growing and Analyzing Biofilms in Flow Chambers , 2011, Current protocols in microbiology.

[61]  V. Srinivasan,et al.  Applications of electrowetting-based digital microfluidics in clinical diagnostics , 2011, Expert review of molecular diagnostics.

[62]  M. Uhlén,et al.  Affinity reagents for lab on chips. , 2011, Lab on a chip.

[63]  S. Molin,et al.  The clinical impact of bacterial biofilms , 2011, International Journal of Oral Science.

[64]  A. Parker,et al.  A Modified CDC Biofilm Reactor to Produce Mature Biofilms on the Surface of PEEK Membranes for an In Vivo Animal Model Application , 2011, Current Microbiology.

[65]  Chong H. Ahn,et al.  State-of-the-art lab chip sensors for environmental water monitoring , 2011 .

[66]  P. Hrncirik,et al.  Novel Micro-scale Analytical Devices for On-line Bioprocess Monitoring: A Review , 2010 .

[67]  A Auge,et al.  How to design magneto-based total analysis systems for biomedical applications. , 2010, Biosensors & bioelectronics.

[68]  L. Fonseca,et al.  Biosensors as rapid diagnostic tests for tropical diseases , 2010 .

[69]  Michelle Khine,et al.  Unconventional Low-Cost Fabrication and Patterning Techniques for Point of Care Diagnostics , 2010, Annals of Biomedical Engineering.

[70]  Wei Duan,et al.  Lab-on-a-chip: a component view , 2010 .

[71]  P. Ripka,et al.  Biofilm detection by the impedance method , 2010, 2010 3rd International Conference on Biomedical Engineering and Informatics.

[72]  Yun-Gon Kim,et al.  In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. , 2010, Lab on a chip.

[73]  Maryam Tabrizian,et al.  Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. , 2010, Lab on a chip.

[74]  E. Simon Biological and chemical sensors for cancer diagnosis , 2010 .

[75]  A. Ellington,et al.  Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps” , 2010, mBio.

[76]  J. Cooper,et al.  Tumors on chips: oncology meets microfluidics. , 2010, Current opinion in chemical biology.

[77]  Nobuhiko Nomura,et al.  Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy. , 2010, Journal of bioscience and bioengineering.

[78]  D. Huo,et al.  Recent Advances on Optical Detection Methods and Techniques for Cell-Based Microfluidic Systems , 2010 .

[79]  A. Levchenko,et al.  Lab-on-a-chip devices as an emerging platform for stem cell biology. , 2010, Lab on a chip.

[80]  M. Dufva,et al.  Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies. , 2010, Lab on a chip.

[81]  Fan-Gang Tseng,et al.  Microfluidic Systems for Biosensing , 2010, Sensors.

[82]  Weichun Yang,et al.  Integrated Multiprocess Microfluidic Systems for Automating Analysis , 2010, JALA.

[83]  Gwo-Bin Lee,et al.  Microfluidic Immunoassays , 2010 .

[84]  Y Rosen,et al.  MEMS and microfluidics for diagnostics devices. , 2010, Current pharmaceutical biotechnology.

[85]  Timothy J Davis,et al.  FRET for lab-on-a-chip devices - current trends and future prospects. , 2010, Lab on a chip.

[86]  Roland Zengerle,et al.  Lab-on-a-Foil: microfluidics on thin and flexible films. , 2010, Lab on a chip.

[87]  Carolyn G. Conant,et al.  New Device for High-Throughput Viability Screening of Flow Biofilms , 2010, Applied and Environmental Microbiology.

[88]  David S. Jones,et al.  Validation of the CDC biofilm reactor as a dynamic model for assessment of encrustation formation on urological device materials. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[89]  R. Zengerle,et al.  Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. , 2010, Chemical Society reviews.

[90]  Josep Samitier,et al.  Integrated electrochemical DNA biosensors for lab‐on‐a‐chip devices , 2009, Electrophoresis.

[91]  Haw Yang,et al.  Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy. , 2009, Analytical chemistry.

[92]  Christian Melander,et al.  Controlling Bacterial Biofilms , 2009, Chembiochem : a European journal of chemical biology.

[93]  A. Jayaraman,et al.  Modeling Growth and Quorum Sensing in Biofilms Grown in Microfluidic Chambers , 2009, Annals of Biomedical Engineering.

[94]  Henny C van der Mei,et al.  Influence of cell surface appendages on the bacterium-substratum interface measured real-time using QCM-D. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[95]  Andrew J deMello,et al.  Micro- and nanofluidic systems for high-throughput biological screening. , 2009, Drug discovery today.

[96]  Ali Othmane,et al.  Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber , 2008 .

[97]  Rashid Bashir,et al.  Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. , 2008, Biotechnology advances.

[98]  Woo Y. Lee,et al.  Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms , 2008, Biomedical microdevices.

[99]  Peter Ertl,et al.  Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. , 2007, Lab on a chip.

[100]  D. Fernig,et al.  Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring. , 2007, Biosensors & bioelectronics.

[101]  Roland Zengerle,et al.  Microfluidic platforms for lab-on-a-chip applications. , 2007, Lab on a chip.

[102]  Steve Flint,et al.  Bacterial cell attachment, the beginning of a biofilm , 2007, Journal of Industrial Microbiology & Biotechnology.

[103]  Jessica Melin,et al.  Microfluidic large-scale integration: the evolution of design rules for biological automation. , 2007, Annual review of biophysics and biomolecular structure.

[104]  Daniel B. Oerther,et al.  Development of a microfluidic biosensor for detection of environmental mycobacteria , 2007 .

[105]  M. V. van Loosdrecht,et al.  On the reproducibility of microcosm experiments - different community composition in parallel phototrophic biofilm microcosms. , 2006, FEMS microbiology ecology.

[106]  J. Mas,et al.  On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network , 2006 .

[107]  J. Almeida,et al.  Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements. , 2006, Journal of microbiological methods.

[108]  H. Craighead Future lab-on-a-chip technologies for interrogating individual molecules , 2006, Nature.

[109]  M. Pereira da Cunha,et al.  Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. , 2006, Biosensors & bioelectronics.

[110]  A. Camper,et al.  Identification of Staphylococcus aureus Proteins Recognized by the Antibody-Mediated Immune Response to a Biofilm Infection , 2006, Infection and Immunity.

[111]  Chunsun Zhang,et al.  PCR microfluidic devices for DNA amplification. , 2006, Biotechnology advances.

[112]  A. Manz,et al.  Lab-on-a-chip: microfluidics in drug discovery , 2006, Nature Reviews Drug Discovery.

[113]  M. Hamilton,et al.  Statistical assessment of a laboratory method for growing biofilms. , 2005, Microbiology.

[114]  E. Alocilja,et al.  Design and fabrication of a microimpedance biosensor for bacterial detection , 2004, IEEE Sensors Journal.

[115]  Yanbin Li,et al.  Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. , 2004, Biosensors & bioelectronics.

[116]  Antje J. Baeumner,et al.  Characterization and Optimization of Interdigitated Ultramicroelectrode Arrays as Electrochemical Biosensor Transducers , 2004 .

[117]  Olivier Sire,et al.  IR optical fiber sensor for biomedical applications , 2003 .

[118]  D. Davies,et al.  Understanding biofilm resistance to antibacterial agents , 2003, Nature Reviews Drug Discovery.

[119]  S. Quake,et al.  Microfluidic Large-Scale Integration , 2002, Science.

[120]  A. Bhunia,et al.  Microscale electronic detection of bacterial metabolism , 2002 .

[121]  R. Donlan,et al.  Biofilms: Microbial Life on Surfaces , 2002, Emerging infectious diseases.

[122]  H. Ceri,et al.  Biofilm bacteria: formation and comparative susceptibility to antibiotics. , 2002, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[123]  Siegfried Hunklinger,et al.  A SAW immunosensor for operation in liquid using a SiO2 protective layer , 2001 .

[124]  R. Donlan Biofilms and device-associated infections. , 2001, Emerging infectious diseases.

[125]  H.J. Kadim,et al.  An optical fiber sensor for biofilm measurement using intensity modulation and image analysis , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[126]  B. Ersbøll,et al.  Experimental reproducibility in flow-chamber biofilms. , 2000, Microbiology.

[127]  D. Figeys,et al.  Lab-on-a-chip: a revolution in biological and medical sciences , 2000, Analytical chemistry.

[128]  K. Swope,et al.  The use of confocal scanning laser microscopy and other tools to characterize Escherichia coli in a high-cell-density synthetic biofilm. , 2000, Biotechnology and bioengineering.

[129]  R J Palmer,et al.  Modern microscopy in biofilm research: confocal microscopy and other approaches. , 1999, Current opinion in biotechnology.

[130]  H. Ceri,et al.  The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms , 1999, Journal of Clinical Microbiology.

[131]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[132]  C. Potera Forging a Link Between Biofilms and Disease , 1999, Science.

[133]  R. Mertens,et al.  Nanoscaled interdigitated electrode arrays for biochemical sensors , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[134]  Stephen J. Martin,et al.  Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications , 1996 .

[135]  J. Costerton,et al.  Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria , 1994, Antimicrobial Agents and Chemotherapy.

[136]  J. Costerton,et al.  Testing the susceptibility of bacteria in biofilms to antibacterial agents , 1990, Antimicrobial Agents and Chemotherapy.

[137]  L. C. Clark,et al.  ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY , 1962 .

[138]  A. Boisen,et al.  Centrifugal microfluidic platform for optical monitoring and treatment of biofilms , 2018 .

[139]  S. Arana,et al.  Brettanomyces bruxellensis growth detection using interdigitated microelectrode based sensors by means of impedance analysis , 2018 .

[140]  T. Gotszalk,et al.  Autonomous system for in Situ Assay of Antibiotic Activity on Bacterial Biofilms Using Viscosity and Density Sensing Quartz Tuning Forks , 2016 .

[141]  S. Subramanian INTEGRATED THRESHOLD-ACTIVATED FEEDBACK MICROSYSTEM FOR REAL-TIME CHARACTERIZATION, SENSING AND TREATMENT OF BACTERIAL BIOFILMS , 2016 .

[142]  W. Bentley,et al.  An optical microfluidic platform for spatiotemporal biofilm treatment monitoring , 2015 .

[143]  Mariana T. Meyer,et al.  Design and Implementation of Microfluidic Systems for Bacterial Biofilm Monitoring and Manipulation , 2014 .

[144]  M. Mohammed,et al.  on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers , 2011 .

[145]  John Greenman,et al.  Development of microfluidic devices for biomedical and clinical application , 2011 .

[146]  A. Al-Ahmad,et al.  Visualization of adherent micro-organisms using different techniques. , 2010, Journal of medical microbiology.

[147]  CRITICAL REVIEW www.rsc.org/loc | Lab on a Chip Chitosan: an integrative biomaterial for lab-on-a-chip devices , 2010 .

[148]  M. Shirtliff,et al.  The functional resistance of bacterial biofilms , 2009 .

[149]  Vincent Studer,et al.  Scaling properties of a low-actuation pressure microfluidic valve , 2004 .

[150]  A. Kharazmi,et al.  Robbins device in biofilm research. , 1999, Methods in enzymology.

[151]  David S. Ballantine,et al.  Acoustic wave sensors : theory, design, and physico-chemical applications , 1997 .

[152]  J. Gordon,et al.  The oscillation frequency of a quartz resonator in contact with liquid , 1985 .