Approximation of explicit model predictive control using regular piecewise affine functions : an input-to-state stability approach

Piecewise affine (PWA) feedback control laws defined on general polytopic partitions, as for instance obtained by explicit model predictive control, will often be prohibitively complex for fast systems. In this work the authors study the problem of approximating these high-complexity controllers by low-complexity PWA control laws defined on more regular partitions, facilitating faster on-line evaluation. The approach is based on the concept of input-to-state stability (ISS). In particular, the existence of an ISS Lyapunov function (LF) is exploited to obtain a priori conditions that guarantee asymptotic stability and constraint satisfaction of the approximate low-complexity controller. These conditions can be expressed as local semidefinite programs or linear programs, in case of 2-norm or 1, ∞-norm-based ISS, respectively, and apply to PWA plants. In addition, as ISS is a prerequisite for our approximation method, the authors provide two tractable computational methods for deriving the necessary ISS inequalities from nominal stability. A numerical example is provided that illustrates the main results.

[1]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[2]  Eduardo Sontag Further facts about input to state stabilization , 1990 .

[3]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[4]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[5]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[6]  Stephen P. Boyd,et al.  Quadratic stabilization and control of piecewise-linear systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[7]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[8]  P. Julián,et al.  High-level canonical piecewise linear representation using a simplicial partition , 1999 .

[9]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[10]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[11]  Anders Rantzer,et al.  Piecewise linear quadratic optimal control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[12]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[13]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[14]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[15]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[16]  D. Limón,et al.  Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[17]  Manfred Morari,et al.  Analysis of discrete-time piecewise affine and hybrid systems , 2002, Autom..

[18]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[19]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[20]  A. Bemporad,et al.  Suboptimal Explicit Receding Horizon Control via Approximate Multiparametric Quadratic Programming , 2003 .

[21]  Marco Storace,et al.  A method for the approximate synthesis of cellular non‐linear networks—Part 1: Circuit definition , 2003, Int. J. Circuit Theory Appl..

[22]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[23]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[24]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[25]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[26]  Andrew R. Teel,et al.  Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control , 2005, Autom..

[27]  Alberto Bemporad,et al.  Dynamic programming for constrained optimal control of discrete-time linear hybrid systems , 2005, Autom..

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[29]  Alberto Bemporad,et al.  Robust explicit MPC based on approximate multiparametric convex programming , 2004, IEEE Transactions on Automatic Control.

[30]  Mato Baotic,et al.  Constrained Optimal Control of Hybrid Systems With a Linear Performance Index , 2006, IEEE Transactions on Automatic Control.

[31]  Alberto Bemporad,et al.  Stabilizing Model Predictive Control of Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[32]  Frank J. Christophersen,et al.  Controller complexity reduction for piecewise affine systems through safe region elimination , 2007, 2007 46th IEEE Conference on Decision and Control.

[33]  Andrew R. Teel,et al.  Nominally Robust Model Predictive Control With State Constraints , 2007, IEEE Transactions on Automatic Control.

[34]  W. P. M. H. Heemels,et al.  On robustness of constrained discrete-time systems to state measurement errors , 2008, Autom..

[35]  W. P. M. H. Heemels,et al.  On input-to-state stability of min-max nonlinear model predictive control , 2008, Syst. Control. Lett..

[36]  Frank J. Christophersen,et al.  Polynomial Approximation of Closed-form MPC for Piecewise Affine Systems , 2008 .

[37]  Marco Storace,et al.  Circuit implementation of piecewise-affine functions based on a binary search tree , 2009, 2009 European Conference on Circuit Theory and Design.

[38]  Manfred Morari,et al.  A multiscale approximation scheme for explicit model predictive control with stability, feasibility, and performance guarantees , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[39]  Manfred Morari,et al.  Approximate explicit MPC using bilevel optimization , 2009, 2009 European Control Conference (ECC).

[40]  W. P. M. H. Heemels,et al.  Predictive control of hybrid systems: Input-to-state stability results for sub-optimal solutions , 2009, Autom..

[41]  W. P. M. H. Heemels,et al.  Lyapunov Functions, Stability and Input-to-State Stability Subtleties for Discrete-Time Discontinuous Systems , 2009, IEEE Transactions on Automatic Control.

[42]  Manfred Morari,et al.  Polytopic Approximation of Explicit Model Predictive Controllers , 2010, IEEE Transactions on Automatic Control.

[43]  Yuzo Ohta,et al.  Stability analysis of uncertain piecewise linear systems using Piecewise Quadratic Lyapunov Functions , 2010, 2010 IEEE International Symposium on Intelligent Control.

[44]  Pedro Julián,et al.  Integrated circuit implementation of multi-dimensional piecewise-linear functions , 2010, Digit. Signal Process..

[45]  Morten Hovd,et al.  Piecewise quadratic Lyapunov functions for stability verification of approximate explicit MPC , 2010 .

[46]  Tor Arne Johansen,et al.  Using hash tables to manage the time-storage complexity in a point location problem: Application to explicit model predictive control , 2011, Autom..

[47]  Marco Storace,et al.  Digital architectures realizing piecewise‐linear multivariate functions: Two FPGA implementations , 2011, Int. J. Circuit Theory Appl..

[48]  Alberto Bemporad,et al.  Ultra-Fast Stabilizing Model Predictive Control via Canonical Piecewise Affine Approximations , 2011, IEEE Transactions on Automatic Control.

[49]  Khadir Mohamed,et al.  Model Predictive Control: Theory and Design , 2014 .