Semiblind Hyperspectral Unmixing in the Presence of Spectral Library Mismatches

The dictionary-aided sparse regression (SR) approach has recently emerged as a promising alternative to hyperspectral unmixing in remote sensing. By using an available spectral library as a dictionary, the SR approach identifies the underlying materials in a given hyperspectral image by selecting a small subset of spectral samples in the dictionary to represent the whole image. A drawback with the current SR developments is that an actual spectral signature in the scene is often assumed to have zero mismatch with its corresponding dictionary sample, and such an assumption is considered too ideal in practice. In this paper, we tackle the spectral signature mismatch problem by proposing a dictionary-adjusted nonconvex sparsity-encouraging regression (DANSER) framework. The main idea is to incorporate dictionary-correcting variables in an SR formulation. A simple and low per-iteration complexity algorithm is tailor-designed for practical realization of DANSER. Using the same dictionary-correcting idea, we also propose a robust subspace solution for dictionary pruning. Extensive simulations and real-data experiments show that the proposed method is effective in mitigating the undesirable spectral signature mismatch effects.

[1]  José M. Bioucas-Dias,et al.  A robust subspace method for semiblind dictionary-aided hyperspectral unmixing , 2014, 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[2]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  N. Sidiropoulos,et al.  Least squares algorithms under unimodality and non‐negativity constraints , 1998 .

[4]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[5]  Paul D. Gader,et al.  A Signal Processing Perspective on Hyperspectral Unmixing , 2014 .

[6]  Arye Nehorai,et al.  Joint Sparse Recovery Method for Compressed Sensing With Structured Dictionary Mismatches , 2013, IEEE Transactions on Signal Processing.

[7]  Jun Fang,et al.  Exact Reconstruction Analysis of Log-Sum Minimization for Compressed Sensing , 2013, IEEE Signal Processing Letters.

[8]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Antonio J. Plaza,et al.  A Signal Processing Perspective on Hyperspectral Unmixing: Insights from Remote Sensing , 2014, IEEE Signal Processing Magazine.

[10]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[11]  Andrzej Cichocki,et al.  Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[12]  Liangpei Zhang,et al.  An Improved Nonlocal Sparse Unmixing Algorithm for Hyperspectral Imagery , 2015, IEEE Geoscience and Remote Sensing Letters.

[13]  Yan Zhang,et al.  Sparse Hyperspectral Unmixing Based on Constrained lp - l2 Optimization , 2013, IEEE Geoscience and Remote Sensing Letters.

[14]  J. Tropp Algorithms for simultaneous sparse approximation. Part II: Convex relaxation , 2006, Signal Process..

[15]  Yonina C. Eldar,et al.  Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.

[16]  Zhenwei Shi,et al.  Sparse hyperspectral unmixing using an approximate L0 norm , 2014 .

[17]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[19]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[21]  I. Stancu-Minasian Nonlinear Fractional Programming , 1997 .

[22]  Antonio J. Plaza,et al.  Collaborative Sparse Regression for Hyperspectral Unmixing , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Pol Coppin,et al.  Endmember variability in Spectral Mixture Analysis: A review , 2011 .

[24]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[25]  Antonio J. Plaza,et al.  MUSIC-CSR: Hyperspectral Unmixing via Multiple Signal Classification and Collaborative Sparse Regression , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Nikos D. Sidiropoulos,et al.  Joint Tensor Factorization and Outlying Slab Suppression With Applications , 2015, IEEE Transactions on Signal Processing.

[27]  Ying Wu,et al.  Regularized Simultaneous Forward–Backward Greedy Algorithm for Sparse Unmixing of Hyperspectral Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[29]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[30]  Zhenwei Shi,et al.  Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Marian-Daniel Iordache,et al.  Greedy algorithms for pure pixels identification in hyperspectral unmixing: A multiple-measurement vector viewpoint , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[32]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[33]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[34]  Jie Chen,et al.  Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.

[35]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[36]  Zhiguo Jiang,et al.  Subspace Matching Pursuit for Sparse Unmixing of Hyperspectral Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[37]  K. C. Ho,et al.  Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing , 2014, IEEE Signal Processing Magazine.

[38]  Yunhai Xiao,et al.  A Fast Algorithm for Total Variation Image Reconstruction from Random Projections , 2010 .

[39]  Rémi Gribonval,et al.  Blind calibration for compressed sensing by convex optimization , 2011, 1111.7248.

[40]  Masao Fukushima,et al.  Quadratic Fractional Programming Problems with Quadratic Constraints , 2008 .

[41]  Georgios B. Giannakis,et al.  Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling , 2010, IEEE Transactions on Signal Processing.

[42]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[43]  Jong Chul Ye,et al.  Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing , 2012, IEEE Transactions on Information Theory.

[44]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Rémi Gribonval,et al.  Blind Sensor Calibration in Sparse Recovery Using Convex Optimization , 2013 .

[46]  Konstantinos Koutroumbas,et al.  A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing , 2012, IEEE Transactions on Signal Processing.

[47]  Jérôme Idier,et al.  Convex half-quadratic criteria and interacting auxiliary variables for image restoration , 2001, IEEE Trans. Image Process..