Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.

We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.

[1]  J. Schaefer,et al.  Electrochemically driven cation segregation in the mixed conductor La0.6Sr0.4Co0.2Fe0.8O3 − δ , 2012 .

[2]  Y. Shao-horn,et al.  Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells , 2011 .

[3]  Peter Vang Hendriksen,et al.  Assessment of the Cathode Contribution to the Degradation of Anode-Supported Solid Oxide Fuel Cells , 2008 .

[4]  Michael C. Tucker,et al.  Performance of metal-supported SOFCs with infiltrated electrodes , 2007 .

[5]  M. Engelhard,et al.  Degradation Mechanisms of La – Sr – Co – Fe – O3 SOFC Cathodes , 2006 .

[6]  B. Yildiz,et al.  Chemical Heterogeneities on La0.6Sr0.4CoO3−δ Thin Films—Correlations to Cathode Surface Activity and Stability , 2012 .

[7]  John B. Goodenough,et al.  Cathode materials: A personal perspective , 2007 .

[8]  Liming Yang,et al.  Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells , 2007 .

[9]  P. Voorhees,et al.  Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening , 2011 .

[10]  S. George,et al.  Atomic layer deposition of Al2O3 and SiO2 on BN particles using sequential surface reactions , 2000 .

[11]  K. Thydén,et al.  Stability of Ni–yttria stabilized zirconia anodes based on Ni-impregnation , 2010 .

[12]  F. Tietz,et al.  Time-dependent performance of mixed-conducting SOFC cathodes , 2006 .

[13]  J. Vohs,et al.  Highly Active and Thermally Stable Core-Shell Catalysts for Solid Oxide Fuel Cells , 2011 .

[14]  N. Bonanos,et al.  Electrodes for Solid Oxide Fuel Cells Based on Infiltration of Co-Based Materials , 2012 .

[15]  Raymond J. Gorte,et al.  High‐Performance SOFC Cathodes Prepared by Infiltration , 2009 .

[16]  M. Misono,et al.  Advances in Designing Perovskite Catalysts. , 2002 .

[17]  Alan W. Weimer,et al.  Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles , 2000 .

[18]  B. Yildiz,et al.  Chemical Heterogeneities on La 0 . 6 Sr 0 . 4 CoO 3-δ Thin Films-Correlations to Cathode Surface Activity and Stability , 2012 .

[19]  Tal Z. Sholklapper,et al.  Synthesis and Stability of a Nanoparticle-Infiltrated Solid Oxide Fuel Cell Electrode , 2007 .

[20]  E. Siebert,et al.  Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes , 2007 .

[21]  S. Barnett,et al.  Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3 − δ into Gd-Doped Ceria , 2008 .

[22]  Takashi Shimizu EFFECT OF ELECTRONIC STRUCTURE AND TOLERANCE FACTOR ON CO OXIDATION ACTIVITY OF PEROVSKITE OXIDES , 1980 .

[23]  V. Henrich The surfaces of metal oxides , 1985 .

[24]  K. Gerdes,et al.  Long-Term Stability of SOFC Composite Cathode Activated by Electrocatalyst Infiltration , 2012 .

[25]  T. Fister,et al.  In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure , 2008 .

[26]  Tal Z. Sholklapper,et al.  Nanostructured Solid Oxide Fuel Cell Electrodes , 2007 .

[27]  P. Vaccaro,et al.  Optical properties of self-assembled InAs quantum dots grown on GaAs(211)A substrate , 2000 .

[28]  S. George,et al.  Progress and future directions for atomic layer deposition and ALD-based chemistry , 2011 .

[29]  J. M. Serra,et al.  Screening of A-Substitution in the System A0.68Sr0.3Fe0.8Co0.2O3 − δ for SOFC Cathodes , 2008 .

[30]  Raymond J. Gorte,et al.  Characterization of Sr-Doped LaCoO3-YSZ Composites Prepared by Impregnation Methods , 2004 .

[31]  N. Dasgupta,et al.  ALD for clean energy conversion, utilization, and storage , 2011 .

[32]  M. Mogensen,et al.  Electrochemical performance and degradation of (La0.6Sr0.4)0.99CoO3 − δ as porous SOFC-cathode , 2008 .

[33]  E. Wachsman,et al.  Mechanism of La_0.6Sr_0.4Co_0.2Fe_0.8O_3 cathode degradation , 2012 .

[34]  K. Murata,et al.  LSM‐YSZ Cathode with Infiltrated Cobalt Oxide and Cerium Oxide Nanoparticles , 2009 .

[35]  MatsumotoTakashi,et al.  THE SYNTHESIS AND CONFIGURATION OF FUKIIC ACID DERIVATIVES , 1972 .

[36]  Steven M. George,et al.  Atomic Layer Deposition of SiO2 and TiO2 in Alumina Tubular Membranes: Pore Reduction and Effect of Surface Species on Gas Transport , 2000 .

[37]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[38]  J. Goodenough,et al.  Characterization of the Double Perovskite Ba2BixSc0.2Co1.8–xO6−δ (x = 0.1, 0.2) , 2012 .

[39]  J. Vohs,et al.  The Stability of LSF-YSZ Electrodes Prepared by Infiltration , 2007 .

[40]  M. A. Peña,et al.  Chemical Structures and Performance of Perovskite Oxides , 2001 .

[41]  Steven M. George,et al.  Modification of Porous Alumina Membranes Using Al2O3 Atomic Layer Controlled Deposition , 1997 .

[42]  L. Jian,et al.  Mn‐Stabilised Microstructure and Performance of Pd‐impregnated YSZ Cathode for Intermediate Temperature Solid Oxide Fuel Cells , 2009 .

[43]  D. Leonard,et al.  Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells , 2010 .

[44]  D. Morgan,et al.  Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells , 2012 .

[45]  Steven M. George,et al.  Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence , 1995 .