Hybrid finite‐volume finite‐difference scheme for the solution of Boussinesq equations
暂无分享,去创建一个
[1] Derek M. Causon,et al. HIGH-RESOLUTION FINITE-VOLUME METHOD FOR SHALLOW WATER FLOWS , 1998 .
[2] K. S. Erduran,et al. Performance of finite volume solutions to the shallow water equations with shock‐capturing schemes , 2002 .
[3] Satoru Yamamoto,et al. An efficient CFD approach for simulating unsteady hypersonic shock-shock interference flows , 1998 .
[4] Martin Berzins,et al. A FINITE ELEMENT METHOD FOR THE ONE-DIMENSIONAL EXTENDED BOUSSINESQ EQUATIONS , 1999 .
[5] M. Vázquez-Cendón. Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry , 1999 .
[6] D. Zhao,et al. Finite‐Volume Two‐Dimensional Unsteady‐Flow Model for River Basins , 1994 .
[7] D. Peregrine. Long waves on a beach , 1967, Journal of Fluid Mechanics.
[8] Seung-Buhm Woo,et al. A Petrov–Galerkin finite element model for one‐dimensional fully non‐linear and weakly dispersive wave propagation , 2001 .
[9] D. Zhao,et al. Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling , 1996 .
[10] Derek M. Causon,et al. Calculation of unsteady bore diffraction using a high resolution finite volume method , 2000 .
[11] Sandra Soares Frazao,et al. Undular bores and secondary waves -Experiments and hybrid finite-volume modelling , 2002 .
[12] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[13] Michael B. Abbott,et al. Accuracy of Short-Wave Numerical Models , 1984 .
[14] Yan Yu,et al. Numerical modeling of Boussinesq equations by finite element method , 1999 .
[15] Derek M. Causon,et al. Numerical simulation of wave overtopping of coastal structures using the non-linear shallow water equations , 2000 .
[16] M. W. Dingemans,et al. Water Wave Propagation Over Uneven Bottoms , 1997 .
[17] P. A. Madsen,et al. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry , 1992 .
[18] Th. V. Karambas,et al. A breaking wave propagation model based on the Boussinesq equations , 1992 .
[19] D. Causon,et al. The surface gradient method for the treatment of source terms in the shallow-water equations , 2001 .
[20] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[21] Pilar García-Navarro,et al. Flux difference splitting for 1D open channel flow equations , 1992 .
[22] C. G. M. A. D. Causon. On High Resolution Finite Volume Modelling OfDiscontinuous Solutions Of The Shallow WaterEquations , 1997 .
[23] Jean-Antoine Désidéri,et al. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes , 1998 .
[24] Brett F. Sanders,et al. Finite-Volume Models for Unidirectional, Nonlinear, Dispersive Waves , 2002 .
[25] Yan Yu,et al. Wave concentration by a navigation channel , 2000 .
[26] P. A. Madsen,et al. A new form of the Boussinesq equations with improved linear dispersion characteristics , 1991 .
[27] Pilar García-Navarro,et al. A numerical model for the flooding and drying of irregular domains , 2002 .
[28] Martin Berzins,et al. A finite element method for the two‐dimensional extended Boussinesq equations , 2002 .
[29] C. Hirsch,et al. Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.
[30] K. Nadaoka,et al. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth , 1996 .
[31] J. Boussinesq,et al. Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .
[32] G. Wei,et al. Time-Dependent Numerical Code for Extended Boussinesq Equations , 1995 .
[33] O. Nwogu. Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .