Fast QR Eigenvalue Algorithms for Hessenberg Matrices Which Are Rank-One Perturbations of Unitary Matrices

Let $\mathcal H_n\subset \mathbb C^{n\times n}$ be the class of $n\times n$ Hessenberg matrices $A$ which are rank-one modifications of a unitary matrix, that is, $A=H +\B u\B w^H$, where $H$ is unitary and $\mathbf{u}, \mathbf{w}\in \mathbb C^n$. The class $\mathcal H_n$ includes three well-known subclasses: unitary Hessenberg matrices, companion (Frobenius) matrices, and fellow matrices. The paper presents some novel fast adaptations of the shifted QR algorithm for computing the eigenvalues of a matrix $A\in \mathcal H_n$ where each step can be performed with $O(n)$ flops and $O(n)$ memory space. Numerical experiments confirm the effectiveness and the robustness of these methods.

[1]  Frann Coise Tisseur Backward Stability of the Qr Algorithm , 1996 .

[2]  Dario Bini,et al.  ON THE SHIFTED QR ITERATION APPLIED TO COMPANION MATRICES , 2004 .

[3]  Lothar Reichel,et al.  Polynomial zerofinders based on Szego polynomials , 2001 .

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  I. Gohberg,et al.  Linear complexity inversion algorithms for a class of structured matrices , 1999 .

[6]  Eugene E. Tyrtyshnikov Mosaic Ranks for Weakly Semiseparable Matrices , 1999, LSSC.

[7]  James Demmel,et al.  On computing givens rotations reliably and efficiently , 2002, TOMS.

[8]  Raf Vandebril,et al.  A note on the representation and definition of semiseparable matrices , 2005, Numer. Linear Algebra Appl..

[9]  I. Gohberg,et al.  A modification of the Dewilde-van der Veen method for inversion of finite structured matrices , 2002 .

[10]  William B. Gragg,et al.  Downdating of Szego Polynomials and Data Fitting Applications , 1992 .

[11]  Gene H. Golub,et al.  Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.

[12]  Lothar Reichel,et al.  CONTINUATION METHODS FOR THE COMPUTATION OF ZEROS OF SZEGO POLYNOMIALS , 1996 .

[13]  Tai-Lin Wang,et al.  Convergence of the unitary QR algorithm with a unimodular Wilkinson shift , 2003, Math. Comput..

[14]  Michael Stewart Stability properties of several variants of the unitary Hessenberg QR algorithm , 1999 .

[15]  P. Dewilde,et al.  Time-Varying Systems and Computations , 1998 .

[16]  Lothar Reichel,et al.  The restarted QR-algorithm for eigenvalue computation of structured matrices , 2002 .

[17]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[18]  Tai-Lin Wang,et al.  Convergence of the shifted QR algorithm for unitary Hessenberg matrices , 2002, Math. Comput..

[19]  Israel Gohberg,et al.  Fast inversion algorithms for a class of block structured matrices , 2001 .

[20]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[21]  Lothar Reichel,et al.  Discrete least squares approximation by trigonometric polynomials , 1991 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  William B. Gragg,et al.  The QR algorithm for unitary Hessenberg matrices , 1986 .

[24]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .