Hyperplane Separability and Convexity of Probabilistic Point Sets

We describe an O(n^d) time algorithm for computing the exact probability that two d-dimensional probabilistic point sets are linearly separable, for any fixed d >= 2. A probabilistic point in d-space is the usual point, but with an associated (independent) probability of existence. We also show that the d-dimensional separability problem is equivalent to a (d+1)-dimensional convex hull membership problem, which asks for the probability that a query point lies inside the convex hull of n probabilistic points. Using this reduction, we improve the current best bound for the convex hull membership by a factor of n [Agarwal et al., ESA, 2014]. In addition, our algorithms can handle "input degeneracies" in which more than k+1 points may lie on a k-dimensional subspace, thus resolving an open problem in [Agarwal et al., ESA, 2014]. Finally, we prove lower bounds for the separability problem via a reduction from the k-SUM problem, which shows in particular that our O(n^2) algorithms for 2-dimensional separability and 3-dimensional convex hull membership are nearly optimal.

[1]  Charu C. Aggarwal,et al.  Managing and Mining Uncertain Data , 2009, Advances in Database Systems.

[2]  Timothy M. Chan,et al.  Stochastic minimum spanning trees in euclidean spaces , 2011, SoCG '11.

[3]  Jeff M. Phillips,et al.  Range counting coresets for uncertain data , 2013, SoCG '13.

[4]  Pankaj K. Agarwal,et al.  Convex Hulls Under Uncertainty , 2016, Algorithmica.

[5]  Jeff Erickson,et al.  Lower bounds for linear satisfiability problems , 1995, SODA '95.

[6]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[7]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[8]  Clark F. Olson Probabilistic Indexing for Object Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Subhash Suri,et al.  On the Most Likely Convex Hull of Uncertain Points , 2013, ESA.

[10]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[11]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[12]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..

[13]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[14]  Allan Grønlund Jørgensen,et al.  Threesomes, Degenerates, and Love Triangles , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[15]  Tsvi Kopelowitz,et al.  Higher Lower Bounds from the 3SUM Conjecture , 2014, SODA.

[16]  Hans-Peter Kriegel,et al.  Probabilistic Nearest-Neighbor Query on Uncertain Objects , 2007, DASFAA.

[17]  Pankaj K. Agarwal,et al.  Nearest-neighbor searching under uncertainty , 2012, PODS.

[18]  Philip S. Yu,et al.  A Survey of Uncertain Data Algorithms and Applications , 2009, IEEE Transactions on Knowledge and Data Engineering.

[19]  Timothy M. Chan,et al.  Closest pair and the post office problem for stochastic points , 2011, Comput. Geom..

[20]  Subhash Suri,et al.  Hyperplane separability and convexity of probabilistic point sets , 2017, J. Comput. Geom..

[21]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[22]  Yuan Li,et al.  On the arrangement of stochastic lines in ℤ2 , 2017, J. Discrete Algorithms.

[23]  Bernard Chazelle,et al.  Better lower bounds on detecting affine and spherical degeneracies , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[24]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[25]  Pankaj K. Agarwal,et al.  Range searching on uncertain data , 2012, TALG.

[26]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[27]  Maarten Löffler,et al.  Geometric Computations on Indecisive and Uncertain Points , 2012, ArXiv.

[28]  Christian Böhm,et al.  Probabilistic skyline queries , 2009, CIKM.

[29]  Yuan Li,et al.  On the Separability of Stochastic Geometric Objects, with Applications , 2016, SoCG.

[30]  Mark de Berg,et al.  Separability of imprecise points , 2014, Comput. Geom..

[31]  Subhash Suri,et al.  On the Most Likely Voronoi Diagram and Nearest Neighbor Searching , 2016, Int. J. Comput. Geom. Appl..