FIRST-ORDER MACROSCOPIC MODELLING OF HUMAN CROWD DYNAMICS

This paper deals with the mathematical modelling of crowd dynamics within the framework of continuum mechanics. The method uses the mass conservation equation closed by phenomenological models linking the local velocity to density and density gradients. The closures take into account movement in more than one space dimension, presence of obstacles, pedestrian strategies, and modelling of panic conditions. Numerical simulations of the initial-boundary value problems visualize the ability of the models to predict several interesting phenomena related to the complex system under consideration.

[1]  M. Lighthill,et al.  On kinematic waves I. Flood movement in long rivers , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Harold J Payne,et al.  MODELS OF FREEWAY TRAFFIC AND CONTROL. , 1971 .

[4]  L. F. Henderson On the fluid mechanics of human crowd motion , 1974 .

[5]  Gunnar G. Løvås,et al.  Modeling and Simulation of Pedestrian Traffic Flow , 1994 .

[6]  Michael Batty,et al.  Predicting where we walk , 1997, Nature.

[7]  Dirk Helbing,et al.  Modelling the evolution of human trail systems , 1997, Nature.

[8]  E. Angelis Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems , 1999 .

[9]  T. Vicsek,et al.  Collective behavior of interacting self-propelled particles , 2000, cond-mat/0611742.

[10]  L. Bonilla,et al.  High-field limit of the Vlasov-Poisson-Fokker-Planck system: A comparison of different perturbation methods , 2000, cond-mat/0007164.

[11]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[12]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[13]  Nicola Bellomo,et al.  ON THE MATHEMATICAL THEORY OF VEHICULAR TRAFFIC FLOW I: FLUID DYNAMIC AND KINETIC MODELLING , 2002 .

[14]  Nicola Bellomo,et al.  Generalized kinetic (Boltzmann) models: mathematical structures and applications , 2002 .

[15]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[16]  Ida Bonzani,et al.  From experiments to hydrodynamic traffic flow models: I-modelling and parameter identification , 2003 .

[17]  R. Hughes The flow of human crowds , 2003 .

[18]  N. Bellomo,et al.  From a class of kinetic models to the macroscopic equations for multicellular systems in biology , 2003 .

[19]  Serge P. Hoogendoorn,et al.  Simulation of pedestrian flows by optimal control and differential games , 2003 .

[20]  Rong Yuan,et al.  Qualitative behavior of output for sampled-data feedback control systems , 2003 .

[21]  V. Coscia On a closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow , 2004 .

[22]  N. Bellomo,et al.  First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow , 2005 .

[23]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[24]  A. Seyfried,et al.  The fundamental diagram of pedestrian movement revisited , 2005, physics/0506170.

[25]  Lubos Buzna,et al.  Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions , 2005, Transp. Sci..

[26]  N. Bellomo,et al.  Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems , 2006 .

[27]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[28]  N. Bellomo,et al.  On the onset of non-linearity for diffusion models of binary mixtures of biological materials by asymptotic analysis , 2006 .

[29]  C. Dorso,et al.  Morphological and dynamical aspects of the room evacuation process , 2007 .

[30]  N. Bellomo,et al.  MULTICELLULAR BIOLOGICAL GROWING SYSTEMS: HYPERBOLIC LIMITS TOWARDS MACROSCOPIC DESCRIPTION , 2007 .

[31]  Dirk Helbing,et al.  Dynamics of crowd disasters: an empirical study. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Paolo Frasca,et al.  On the mathematical theory of vehicular traffic flow II: Discrete velocity kinetic models , 2007 .

[33]  Luca Bruno,et al.  Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges , 2007, Math. Comput. Model..

[34]  Andrea Tosin,et al.  Mathematical modeling of vehicular traffic: a discrete kinetic theory approach , 2007 .

[35]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[36]  N. Bellomo,et al.  ON THE MODELLING CROWD DYNAMICS FROM SCALING TO HYPERBOLIC MACROSCOPIC MODELS , 2008 .

[37]  Pierre Degond,et al.  Continuum limit of self-driven particles with orientation interaction , 2007, 0710.0293.

[38]  Sergio Albeverio,et al.  STOCHASTIC DYNAMICS OF VISCOELASTIC SKEINS: CONDENSATION WAVES AND CONTINUUM LIMITS , 2008 .

[39]  Pierre Degond,et al.  A Model for the Formation and Evolution of Traffic Jams , 2008 .

[40]  Salissou Moutari,et al.  A traffic flow model with constraints for the modeling of traffic jams , 2008 .