Optimal parameter estimation of Pauli channels

The optimal measurement configuration, i.e. the optimal input quantum state and measurement in the form of a positive operator-valued measure with two elements, is investigated in this paper for qubit and generalized Pauli channels. The channel directions are defined as the contracting directions of the channel with an arbitrary fixed basis of Pauli matrices. In the qubit Pauli channel case with known channel directions it is shown that the optimal configuration that maximizes the Fisher information of the estimated parameters consists of three von Neumann measurements together with pure input states directed to the appropriate channel directions. Extensions of these results for generalized Pauli channels are also given. Furthermore, a computationally efficient estimation method is proposed for estimating the channel directions in the qubit Pauli channel case. The efficiency of this method is illustrated by simulations: it is shown that its variance is of order 1/N, where N is the number of used measurements.

[1]  Masashi Ban,et al.  Optimal parameter estimation of a depolarizing channel , 2002 .

[2]  G. D’Ariano,et al.  Quantum Tomography , 2003, quant-ph/0302028.

[3]  Experiment design and parameter estimation of Pauli channels using convex optimization , 2011, 1107.0890.

[4]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[5]  Robert Kosut,et al.  Optimal quantum multiparameter estimation and application to dipole- and exchange-coupled qubits , 2008, 0812.4635.

[6]  Hiroshi Imai,et al.  Quantum parameter estimation of a generalized Pauli channel , 2003 .

[7]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[8]  G Vallone,et al.  Experimental realization of optimal noise estimation for a general Pauli channel. , 2011, Physical review letters.

[9]  Martin Plesch,et al.  Process reconstruction: From unphysical to physical maps via maximum likelihood , 2005 .

[10]  G. D’Ariano,et al.  Minimax discrimination of two Pauli channels , 2005, quant-ph/0507081.

[11]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[12]  F. Pastawski,et al.  Selective and efficient estimation of parameters for quantum process tomography. , 2008, Physical review letters.

[13]  Yuan Feng,et al.  Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.

[14]  I. Walmsley,et al.  Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography , 2009, 0911.4310.

[15]  Mohan Sarovar,et al.  Optimal estimation of one-parameter quantum channels , 2004 .

[16]  M. Ruskai,et al.  Pauli diagonal channels constant on axes , 2006, quant-ph/0611106.

[17]  Dietmar G. Fischer,et al.  Channel estimation with noisy entanglement , 2001 .

[18]  R. L. Kosut,et al.  Simplified quantum process tomography , 2009, 0910.4609.

[19]  D. Petz,et al.  Generalizations of Pauli channels , 2008, 0812.2668.