AmpC β-Lactamases

SUMMARY AmpC β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many of the Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor-β-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to Enterobacter aerogenes and Enterobacter cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal blaAmpC gene, such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than extended-spectrum β-lactamase production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC β-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).

[1]  B. Wiedemann,et al.  Natural antimicrobial susceptibility patterns and biochemical identification of Escherichia albertii and Hafnia alvei strains. , 2005, Diagnostic microbiology and infectious disease.

[2]  G. Kronvall,et al.  Characterization and Nucleotide Sequence of a Klebsiella oxytoca Cryptic Plasmid Encoding a CMY-Type β-Lactamase: Confirmation that the Plasmid-Mediated Cephamycinase Originated from the Citrobacter freundii AmpC β-Lactamase , 1999, Antimicrobial Agents and Chemotherapy.

[3]  C. Koh,et al.  Pseudomonas aeruginosa AmpR Is a Global Transcriptional Factor That Regulates Expression of AmpC and PoxB β-Lactamases, Proteases, Quorum Sensing, and Other Virulence Factors , 2005, Antimicrobial Agents and Chemotherapy.

[4]  B. Hall,et al.  Origin and Evolution of the AmpC β-Lactamases of Citrobacter freundii , 2002, Antimicrobial Agents and Chemotherapy.

[5]  W. Liu,et al.  Outer membrane permeability and beta-lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents , 1990, Antimicrobial Agents and Chemotherapy.

[6]  K. Bush,et al.  Kinetic interactions of tazobactam with beta-lactamases from all major structural classes , 1993, Antimicrobial Agents and Chemotherapy.

[7]  P. Nordmann,et al.  Extension of the hydrolysis spectrum of AmpC beta-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. , 2007, The Journal of antimicrobial chemotherapy.

[8]  M. Inoue,et al.  CFE-1, a Novel Plasmid-Encoded AmpC β-Lactamase with an ampR Gene Originating from Citrobacter freundii , 2004, Antimicrobial Agents and Chemotherapy.

[9]  C. Sanders,et al.  Diverse potential of beta-lactamase inhibitors to induce class I enzymes , 1990, Antimicrobial Agents and Chemotherapy.

[10]  M. Kaufmann,et al.  Consecutive mutations leading to the emergence in vivo of imipenem resistance in a clinical strain of Enterobacter aerogenes. , 1994, Journal of medical microbiology.

[11]  K. Bush,et al.  Amp C β-lactamase-producing Escherichia coli in neonatal meningitis: diagnostic and therapeutic challenge , 2006, Journal of Perinatology.

[12]  P. Nordmann,et al.  Cloning and sequencing of the beta-lactamase gene and surrounding DNA sequences of Citrobacter braakii, Citrobacter murliniae, Citrobacter werkmanii, Escherichia fergusonii and Enterobacter cancerogenus. , 2002, FEMS microbiology letters.

[13]  A. Sundsfjord,et al.  The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC. , 2008, The Journal of antimicrobial chemotherapy.

[14]  R. Labia,et al.  Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC 'FOX' cluster. , 2003, FEMS microbiology letters.

[15]  M. Oh,et al.  Epidemiology and Clinical Features of Bloodstream Infections Caused by AmpC-Type-β-Lactamase-Producing Klebsiella pneumoniae , 2004, Antimicrobial Agents and Chemotherapy.

[16]  N. Hanson,et al.  Promoter Sequences Necessary for High-Level Expression of the Plasmid-Associated ampC β-Lactamase Gene blaMIR-1 , 2004, Antimicrobial Agents and Chemotherapy.

[17]  H. Nikaido,et al.  Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins , 1991, Antimicrobial Agents and Chemotherapy.

[18]  D. Livermore Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods , 1987, European Journal of Clinical Microbiology.

[19]  Thierry Naas,et al.  Characterization of VIM-2, a Carbapenem-Hydrolyzing Metallo-β-Lactamase and Its Plasmid- and Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in France , 2000, Antimicrobial Agents and Chemotherapy.

[20]  H. H. Martin,et al.  AmpG, a signal transducer in chromosomal β‐lactamase induction , 1993 .

[21]  Original articles Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of β-lactamase expression in Aeromonas spp. , 2003 .

[22]  G. Barnaud,et al.  Novel Plasmid-Encoded Class C β-Lactamase (MOX-2) in Klebsiella pneumoniae from Greece , 2002, Antimicrobial Agents and Chemotherapy.

[23]  I. Fingerman,et al.  Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrhoeal disease. , 1999, The Journal of antimicrobial chemotherapy.

[24]  P. Bennett,et al.  Aeromonas hydrophila AmpH and CepH beta-lactamases: derepressed expression in mutants of Escherichia coli lacking creB. , 2000, The Journal of antimicrobial chemotherapy.

[25]  A. Yamaguchi,et al.  β-Lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli , 2003 .

[26]  S. Mitsuhashi,et al.  Purification and properties of cephalosporinase from Pseudomonas aeruginosa. , 1981, The Journal of antibiotics.

[27]  Y. Carmeli,et al.  High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. , 2007, The Journal of antimicrobial chemotherapy.

[28]  U. Ullmann,et al.  A Novel Type of AmpC β-Lactamase, ACC-1, Produced by a Klebsiella pneumoniae Strain Causing Nosocomial Pneumonia , 1999, Antimicrobial Agents and Chemotherapy.

[29]  J. Herrmann,et al.  Outbreak of Klebsiella pneumoniae producing transferable AmpC-type beta-lactamase (ACC-1) originating from Hafnia alvei. , 2000, FEMS microbiology letters.

[30]  J. Englund,et al.  Prevalence and Mechanisms of Broad-Spectrum β-Lactam Resistance in Enterobacteriaceae: a Children's Hospital Experience , 2008, Antimicrobial Agents and Chemotherapy.

[31]  P. Grimont,et al.  Escherichia hermannii: susceptibility pattern to β-lactams and production of β-lactamase , 1995 .

[32]  S. Normark,et al.  Beta-lactam resistance in clinical isolates of Escherichia coli caused by elevated production of the ampC-mediated chromosomal beta-lactamase , 1979, Antimicrobial Agents and Chemotherapy.

[33]  C. Chiu,et al.  Outbreak of Dysentery Associated with Ceftriaxone-Resistant Shigella sonnei: First Report of Plasmid-Mediated CMY-2-Type AmpC β-Lactamase Resistance in S. sonnei , 2005, Journal of Clinical Microbiology.

[34]  L. Wang,et al.  The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China , 2008, European Journal of Clinical Microbiology & Infectious Diseases.

[35]  K. Hopkins,et al.  Characterization of AmpC-Mediated Resistance in Clinical Salmonella Isolates Recovered from Humans during the Period 1992 to 2003 in England and Wales , 2005, Journal of Clinical Microbiology.

[36]  D. Livermore,et al.  Unusual tazobactam-sensitive AmpC beta-lactamase from two Escherichia coli isolates. , 1998, The Journal of antimicrobial chemotherapy.

[37]  Shan-Chwen Chang,et al.  High-Level Expression of AmpC β-Lactamase Due to Insertion of Nucleotides between −10 and −35 Promoter Sequences in Escherichia coli Clinical Isolates: Cases Not Responsive to Extended-Spectrum-Cephalosporin Treatment , 2003, Antimicrobial Agents and Chemotherapy.

[38]  K. Thomson,et al.  Detection of Extended-Spectrum β-Lactamases in Members of the Family Enterobacteriaceae: Comparison of the Double-Disk and Three-Dimensional Tests , 1992, Antimicrobial Agents and Chemotherapy.

[39]  J. Pitout,et al.  Evaluation of β-Lactamase Inhibitors in Disk Tests for Detection of Plasmid-Mediated AmpC β-Lactamases in Well-Characterized Clinical Strains of Klebsiella spp , 2005, Journal of Clinical Microbiology.

[40]  A. Mentis,et al.  Identification of a novel plasmid-mediated beta-lactamase with chromosomal cephalosporinase characteristics from Klebsiella pneumoniae. , 1993, The Journal of antimicrobial chemotherapy.

[41]  J. Pitout,et al.  Use of β-Lactamase Inhibitors in Disk Tests To Detect Plasmid-Mediated AmpC β-Lactamases , 2004, Journal of Clinical Microbiology.

[42]  S. Mitsuhashi,et al.  Purification and properties of cephalosporinase in Escherichia coli , 1980, Antimicrobial Agents and Chemotherapy.

[43]  B. Abdalhamid,et al.  Analyses of ampC gene expression in Serratia marcescens reveal new regulatory properties. , 2003, The Journal of antimicrobial chemotherapy.

[44]  J. Tenney,et al.  Efficacy of cefepime in the treatment of infections due to multiply resistant Enterobacter species. , 1996, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[45]  C. Sanders,et al.  Cefepime: the next generation? , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[46]  G. Papanicolaou,et al.  Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae , 1990, Antimicrobial Agents and Chemotherapy.

[47]  R. Penn,et al.  Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. , 1999, The Journal of antimicrobial chemotherapy.

[48]  A. MacGowan,et al.  Distribution and expression of beta-lactamase genes among Aeromonas spp. , 1997, The Journal of antimicrobial chemotherapy.

[49]  N. Parasakthi,et al.  Imipenem-resistance in Klebsiella pneumoniae in Malaysia due to loss of OmpK36 outer membrane protein coupled with AmpC hyperproduction. , 2007, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[50]  P. Nordmann,et al.  Broad-spectrum beta-lactams for treating experimental peritonitis in mice due to Escherichia coli producing plasmid-encoded cephalosporinases. , 2007, The Journal of antimicrobial chemotherapy.

[51]  S. Geerlings,et al.  Pathogenesis and management of bacterial urinary tract infections in adult patients with diabetes mellitus. , 2003, International journal of antimicrobial agents.

[52]  T. Sawai,et al.  Molecular Evolution of a Class C -Lactamase Extending Its Substrate Specificity (*) , 1995, The Journal of Biological Chemistry.

[53]  J. Wu,et al.  Extended-Spectrum β-Lactamases and Plasmid-Mediated AmpC Enzymes among Clinical Isolates of Escherichia coli and Klebsiella pneumoniae from Seven Medical Centers in Taiwan , 2006, Antimicrobial Agents and Chemotherapy.

[54]  P. Bennett,et al.  Role of the 'cre/blr-tag' DNA sequence in regulation of gene expression by the Aeromonas hydrophila beta-lactamase regulator, BlrA. , 2004, The Journal of antimicrobial chemotherapy.

[55]  J. Yatsuyanagi,et al.  Nosocomial outbreak of ceftazidime-resistant Serratia marcescens strains that produce a chromosomal AmpC variant with N235K substitution. , 2006, Japanese journal of infectious diseases.

[56]  D. Paterson,et al.  Detection of plasmid-mediated class C β-lactamases , 2007 .

[57]  M. Schaller,et al.  Cefepime versus Imipenem-Cilastatin for Treatment of Nosocomial Pneumonia in Intensive Care Unit Patients: a Multicenter, Evaluator-Blind, Prospective, Randomized Study , 2003, Antimicrobial Agents and Chemotherapy.

[58]  D. Livermore,et al.  Activity of tigecycline against ESBL-producing and AmpC-hyperproducing Enterobacteriaceae from south-east England. , 2006, The Journal of antimicrobial chemotherapy.

[59]  A. MacGowan,et al.  Original articles Distribution and expression of -lactamase genes among Aeromonas spp. , 1997 .

[60]  M. Bernabeu-Wittel,et al.  Activity of cefepime and carbapenems in experimental pneumonia caused by porin-deficient Klebsiella pneumoniae producing FOX-5 beta-lactamase. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[61]  V. Miriagou,et al.  CMY-13, a Novel Inducible Cephalosporinase Encoded by an Escherichia coli Plasmid , 2004, Antimicrobial Agents and Chemotherapy.

[62]  G. Jacoby,et al.  Roles of β-Lactamases and Porins in Activities of Carbapenems and Cephalosporins against Klebsiella pneumoniae , 1999, Antimicrobial Agents and Chemotherapy.

[63]  P. Bennett,et al.  Analysis of AmpC beta-lactamase expression and sequence in biochemically atypical ceftazidime-resistant Enterobacteriaceae from paediatric patients. , 2004, Journal of Antimicrobial Chemotherapy.

[64]  J. Wu,et al.  Epidemiological Investigation of Bloodstream Infections by Extended Spectrum Cephalosporin-Resistant Escherichia coli in a Taiwanese Teaching Hospital , 2004, Journal of Clinical Microbiology.

[65]  P. Fey,et al.  Characterization of Plasmids Carrying CMY-2 from Expanded-Spectrum Cephalosporin-Resistant Salmonella Strains Isolated in the United States between 1996 and 1998 , 2002, Antimicrobial Agents and Chemotherapy.

[66]  S. Amyes,et al.  Three beta-lactamases isolated fromAeromonas salmonicida, including a carbapenemase not detectable by conventional methods , 1994, European Journal of Clinical Microbiology and Infectious Diseases.

[67]  S. Ichiyama,et al.  Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-lactams, including moxalactam , 1993, Antimicrobial Agents and Chemotherapy.

[68]  E. Bingen,et al.  In Vivo Transfer of Plasmid-Encoded ACC-1 AmpC from Klebsiella pneumoniae to Escherichia coli in an Infant and Selection of Impermeability to Imipenem in K. pneumoniae , 2005, Antimicrobial Agents and Chemotherapy.

[69]  A. Benson,et al.  DNA Sequence Analysis of Regions Surrounding blaCMY-2 from Multiple Salmonella Plasmid Backbones , 2004, Antimicrobial Agents and Chemotherapy.

[70]  P. Nordmann,et al.  Identification of a chromosome-borne class C β-lactamase from Erwinia rhapontici , 2004 .

[71]  K. G. ERIKSSON-GRENNBERG,et al.  Resistance of Escherichia coli to penicillins. II. An improved mapping of the ampA gene. , 1968, Genetical research.

[72]  P. Bennett,et al.  β-Lactamase expression in Plesiomonas shigelloides , 2000 .

[73]  P. Nordmann,et al.  Naturally Occurring Extended-Spectrum Cephalosporinases in Escherichia coli , 2006, Antimicrobial Agents and Chemotherapy.

[74]  R. Venezia,et al.  Nucleotide Sequence of the ChromosomalampC Gene of Enterobacter aerogenes , 2000, Antimicrobial Agents and Chemotherapy.

[75]  P. Nordmann,et al.  Plasmid-mediated and inducible cephalosporinase DHA-2 from Klebsiella pneumoniae. , 2001, The Journal of antimicrobial chemotherapy.

[76]  Ronald N. Jones,et al.  Occurrence of plasmidic AmpC type beta-lactamase-mediated resistance in Escherichia coli: report from the SENTRY Antimicrobial Surveillance Program (North America, 2004). , 2006, International journal of antimicrobial agents.

[77]  V L Yu,et al.  Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. , 1991, Annals of internal medicine.

[78]  P. Nordmann,et al.  In Vitro Analysis of ISEcp1B-Mediated Mobilization of Naturally Occurring β-Lactamase Gene blaCTX-M of Kluyvera ascorbata , 2006, Antimicrobial Agents and Chemotherapy.

[79]  L. Kang,et al.  Comment on: extension of the hydrolysis spectrum of AmpC beta-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. , 2008, The Journal of antimicrobial chemotherapy.

[80]  Neil Woodford,et al.  The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter , 2006 .

[81]  P. Nordmann,et al.  Resistance to Cefepime and Cefpirome Due to a 4-Amino-Acid Deletion in the Chromosome-Encoded AmpC β-Lactamase of a Serratia marcescens Clinical Isolate , 2004, Antimicrobial Agents and Chemotherapy.

[82]  C. Bloch,et al.  "Black holes" and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Frère,et al.  A survey of the kinetic parameters of class C beta-lactamases. Penicillins. , 1988, The Biochemical journal.

[84]  I. Stemplinger,et al.  Comparative characterization of the cephamycinase blaCMY-1 gene and its relationship with other beta-lactamase genes , 1996, Antimicrobial agents and chemotherapy.

[85]  M. Inoue,et al.  Resistance to gram-negative organisms due to high-level expression of plasmid-encoded ampC β-lactamase blaCMY-4 promoted by insertion sequence ISEcp1 , 2007, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[86]  J. Pagés,et al.  Imipenem Resistance in Salmonella enterica Serovar Wien Related to Porin Loss and CMY-4 β-Lactamase Production , 2003, Antimicrobial Agents and Chemotherapy.

[87]  A. Cronquist,et al.  Antimicrobial use and outcomes in patients with multidrug-resistant and pansusceptible Salmonella Newport infections, 2002-2003. , 2005, Microbial drug resistance.

[88]  E. S. Moland,et al.  AmpC Disk Test for Detection of Plasmid-Mediated AmpC β-Lactamases in Enterobacteriaceae Lacking Chromosomal AmpC β-Lactamases , 2005, Journal of Clinical Microbiology.

[89]  C. Chiu,et al.  Increasing ceftriaxone resistance in Salmonella isolates from a university hospital in Taiwan. , 2005, The Journal of antimicrobial chemotherapy.

[90]  Wonkeun Song,et al.  Prevalence of Newer β-Lactamases in Gram-Negative Clinical Isolates Collected in the United States from 2001 to 2002 , 2006, Journal of Clinical Microbiology.

[91]  R. Then,et al.  Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism , 1982, Antimicrobial Agents and Chemotherapy.

[92]  G. Barnaud,et al.  Selection during Cefepime Treatment of a New Cephalosporinase Variant with Extended-Spectrum Resistance to Cefepime in an Enterobacter aerogenes Clinical Isolate , 2004, Antimicrobial Agents and Chemotherapy.

[93]  J. Frère,et al.  Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. , 1988, The Biochemical journal.

[94]  F. Weill,et al.  Ceftriaxone-Resistant Salmonella enterica Serotype Newport, France , 2008, Emerging infectious diseases.

[95]  S. Tsai,et al.  Sequencing and Comparative Genomic Analysis of pK29, a 269-Kilobase Conjugative Plasmid Encoding CMY-8 and CTX-M-3 β-Lactamases in Klebsiella pneumoniae , 2007, Antimicrobial Agents and Chemotherapy.

[96]  L. Hall,et al.  Sequence analysis of two chromosomally mediated inducible beta-lactamases from Aeromonas sobria, strain 163a, one a class D penicillinase, the other an AmpC cephalosporinase. , 1995, The Journal of antimicrobial chemotherapy.

[97]  N. Hanson,et al.  Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. , 1999, Current pharmaceutical design.

[98]  T. Barrett,et al.  Emergence of Multidrug-Resistant Salmonella enterica Serotype Newport Infections Resistant to Expanded-Spectrum Cephalosporins in the United States , 2003 .

[99]  N. Høiby,et al.  Plasmid-borne AmpC β-lactamases , 2002 .

[100]  H. G. Boman,et al.  Resistance of Escherichia coli to Penicillins I. Genetic Study of Some Ampicillin-Resistant Mutants , 1965, Journal of bacteriology.

[101]  R M Hall,et al.  Gene cassettes: a new class of mobile element. , 1995, Microbiology.

[102]  P. Nordmann,et al.  Biochemical-Genetic Characterization and Regulation of Expression of an ACC-1-Like Chromosome-Borne Cephalosporinase fromHafnia alvei , 2000, Antimicrobial Agents and Chemotherapy.

[103]  J. Frère,et al.  Kinetic Properties of Four Plasmid-Mediated AmpC β-Lactamases , 2005, Antimicrobial Agents and Chemotherapy.

[104]  G. Barnaud,et al.  Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. , 2001, FEMS microbiology letters.

[105]  N. Hanson,et al.  Detection of Plasmid-Mediated AmpC β-Lactamase Genes in Clinical Isolates by Using Multiplex PCR , 2002, Journal of Clinical Microbiology.

[106]  P. Nordmann,et al.  Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. , 2006, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[107]  D. Church,et al.  New Method for Laboratory Detection of AmpC β-Lactamases in Escherichia coli and Klebsiella pneumoniae , 2004, Journal of Clinical Microbiology.

[108]  R. Auckenthaler,et al.  Postneurosurgical Meningitis Due to Proteus penneri with Selection of a Ceftriaxone-Resistant Isolate: Analysis of Chromosomal Class A β-Lactamase HugA and its LysR-Type Regulatory Protein HugR , 2002, Antimicrobial Agents and Chemotherapy.

[109]  D. Landman,et al.  Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[110]  B K Shoichet,et al.  Structures of ceftazidime and its transition-state analogue in complex with AmpC beta-lactamase: implications for resistance mutations and inhibitor design. , 2001, Biochemistry.

[111]  L. Riley,et al.  Prevalence of AmpC and other beta-lactamases in enterobacteria at a large urban university hospital in Brazil. , 2008, Diagnostic microbiology and infectious disease.

[112]  A. Yamaguchi,et al.  Beta-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli. , 2003, The Journal of antimicrobial chemotherapy.

[113]  C. Henquell,et al.  Clinical and bacteriological study of nosocomial infections due to Enterobacter aerogenes resistant to imipenem , 1993, Journal of clinical microbiology.

[114]  M. D’Andrea,et al.  Acquired AmpC type beta-lactamases: an emerging problem in Italian long-term care and rehabilitation facilities. , 2007, The new microbiologica.

[115]  E. Abraham,et al.  Cephalosporinase and penicillinase activities of a beta-lactamase from Pseudomonas pyocyanea. , 1965, The Biochemical journal.

[116]  A. Oliver,et al.  Stepwise Upregulation of the Pseudomonas aeruginosa Chromosomal Cephalosporinase Conferring High-Level β-Lactam Resistance Involves Three AmpD Homologues , 2006, Antimicrobial Agents and Chemotherapy.

[117]  A. Philippon,et al.  Genetic Environment of Acquired blaACC-1 β-Lactamase Gene in Enterobacteriaceae Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[118]  O. Gaillot,et al.  Novel transferable beta-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. , 1997, The Journal of antimicrobial chemotherapy.

[119]  P. Nordmann,et al.  Genetic and Biochemical Characterization of a Chromosome-Encoded Carbapenem-Hydrolyzing Ambler Class D β-Lactamase from Shewanella algae , 2004, Antimicrobial Agents and Chemotherapy.

[120]  M. Nicolas-Chanoine,et al.  Antibiotic susceptibility and mechanisms of beta-lactam resistance in 1310 strains of pseudomonas aeruginosa: a French multicentre study (1996). , 2000, The Journal of antimicrobial chemotherapy.

[121]  G. Jacoby,et al.  A functional classification scheme for beta-lactamases and its correlation with molecular structure , 1995, Antimicrobial agents and chemotherapy.

[122]  P. Nordmann,et al.  Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered in a French hospital. , 2008, The Journal of antimicrobial chemotherapy.

[123]  D. Alonso,et al.  Effect of Porins and Plasmid-Mediated AmpC β-Lactamases on the Efficacy of β-Lactams in Rat Pneumonia Caused by Klebsiella pneumoniae , 2006, Antimicrobial Agents and Chemotherapy.

[124]  T. Grundström,et al.  The inhibition of class C beta-lactamases by boronic acids. , 1983, The Biochemical journal.

[125]  R. Bonnet,et al.  CMT-Type β-Lactamase TEM-125, an Emerging Problem for Extended-Spectrum β-Lactamase Detection , 2006, Antimicrobial Agents and Chemotherapy.

[126]  M. Galleni,et al.  Biochemical and Molecular Characterization of Three New Variants of AmpC β-Lactamases from Morganella morganii , 2006, Antimicrobial Agents and Chemotherapy.

[127]  L. Gutmann,et al.  Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem , 1991, Antimicrobial Agents and Chemotherapy.

[128]  H. G. Boman,et al.  Resistance of Escherichia coli to Penicillins VI. Purification and Characterization of the Chromosomally Mediated Penicillinase Present in ampA-Containing Strains , 1970, Journal of bacteriology.

[129]  Y. Park,et al.  Characterization of blaCMY‐10 a novel, plasmid‐encoded AmpC‐type β‐lactamase gene in a clinical isolate of Enterobacter aerogenes , 2003, Journal of applied microbiology.

[130]  V. Miriagou,et al.  Expanded-spectrum cephalosporin resistance in non-typhoid Salmonella. , 2004, International journal of antimicrobial agents.

[131]  G. Jacoby,et al.  Role of β-Lactamases and Porins in Resistance to Ertapenem and Other β-Lactams in Klebsiella pneumoniae , 2004, Antimicrobial Agents and Chemotherapy.

[132]  T. Köhler,et al.  Carbapenem Activities against Pseudomonas aeruginosa: Respective Contributions of OprD and Efflux Systems , 1999, Antimicrobial Agents and Chemotherapy.

[133]  G. Jacoby,et al.  Identification of Extended-Spectrum, AmpC, and Carbapenem- Hydrolyzing β-Lactamases in Escherichia coli and Klebsiella pneumoniae by Disk Tests , 2006, Journal of Clinical Microbiology.

[134]  S. Singhal,et al.  Phenotypic detection of extended-spectrum and AmpC beta-lactamases by a new spot-inoculation method and modified three-dimensional extract test: comparison with the conventional three-dimensional extract test. , 2004, The Journal of antimicrobial chemotherapy.

[135]  B. Wiedemann,et al.  Natural Antibiotic Susceptibilities ofEdwardsiella tarda, E. ictaluri, andE. hoshinae , 2001, Antimicrobial Agents and Chemotherapy.

[136]  M. Inoue,et al.  ampR Gene Mutations That Greatly Increase Class C β-Lactamase Activity in Enterobacter cloacae , 2000, Antimicrobial Agents and Chemotherapy.

[137]  P. Nordmann,et al.  Extended-spectrum cephalosporinases: structure, detection and epidemiology. , 2007, Future microbiology.

[138]  G. Jacoby,et al.  Epidemiology of Conjugative Plasmid-Mediated AmpC β-Lactamases in the United States , 2004, Antimicrobial Agents and Chemotherapy.

[139]  J. Frère,et al.  The diversity of the catalytic properties of class A beta-lactamases. , 1990, The Biochemical journal.

[140]  U. Küster,et al.  Susceptibility of Rhodobacter sphaeroides to beta-lactam antibiotics: isolation and characterization of a periplasmic beta-lactamase (cephalosporinase) , 1989, Journal of bacteriology.

[141]  P. Bennett,et al.  Characterization, cloning and sequence analysis of the inducible Ochrobactrum anthropi AmpC beta-lactamase. , 2001, The Journal of antimicrobial chemotherapy.

[142]  S. Mitsuhashi,et al.  Purification and Some Properties of a Cephalosporinase from Proteus vulgaris , 1981, Antimicrobial Agents and Chemotherapy.

[143]  G. Bou,et al.  Cloning, Nucleotide Sequencing, and Analysis of the Gene Encoding an AmpC β-Lactamase in Acinetobacter baumannii , 2000, Antimicrobial Agents and Chemotherapy.

[144]  E. Sadowy,et al.  Four Variants of the Citrobacter freundii AmpC-Type Cephalosporinases, Including Novel Enzymes CMY-14 and CMY-15, in a Proteus mirabilis Clone Widespread in Poland , 2004, Antimicrobial Agents and Chemotherapy.

[145]  S. Cosgrove,et al.  Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. , 2002, Archives of internal medicine.

[146]  A. M. Ahmed,et al.  Emergence of a cefepime- and cefpirome-resistant Citrobacter freundii clinical isolate harbouring a novel chromosomally encoded AmpC beta-lactamase, CMY-37. , 2008, International journal of antimicrobial agents.

[147]  H. Neu,et al.  The activity of BMY 28142 a new broad spectrum β-lactamase stable cephalosporin , 1986 .

[148]  D. Yong,et al.  Prevalence of plasmid-mediated AmpC beta-lactamases in Escherichia coli and Klebsiella pneumoniae in Korea. , 2006, Microbial drug resistance.

[149]  F. Mostashari,et al.  Emergence of domestically acquired ceftriaxone-resistant Salmonella infections associated with AmpC beta-lactamase. , 2000, JAMA.

[150]  N. Hanson,et al.  Model System To Evaluate the Effect of ampD Mutations on AmpC-Mediated β-Lactam Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[151]  Y. Arakawa,et al.  Practical Methods Using Boronic Acid Compounds for Identification of Class C β-Lactamase-Producing Klebsiella pneumoniae and Escherichia coli , 2005, Journal of Clinical Microbiology.

[152]  K. Bush,et al.  Clinical Characteristics and Molecular Epidemiology Associated with Imipenem-Resistant Klebsiella pneumoniae , 1999 .

[153]  J. Frère,et al.  Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[154]  B. Goldman,et al.  Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58 , 2001, Science.

[155]  G. Barnaud,et al.  Resistance to ceftazidime is associated with a S220Y substitution in the omega loop of the AmpC beta-lactamase of a Serratia marcescens clinical isolate. , 2005, The Journal of antimicrobial chemotherapy.

[156]  I. Phillips,et al.  The ability of β-lactam antibioties to select mutants with derepressed β-lactamase synthesis from Citrobacter freundii , 1995 .

[157]  P. Nordmann,et al.  Characterization of a Chromosomally Encoded Extended-Spectrum Class A β-Lactamase from Kluyvera cryocrescens , 2001, Antimicrobial Agents and Chemotherapy.

[158]  J. Gaillard,et al.  Spread of a Klebsiella pneumoniae Strain Producing a Plasmid- Mediated ACC-1 AmpC β-Lactamase in a Teaching Hospital Admitting Disabled Patients , 2005, Antimicrobial Agents and Chemotherapy.

[159]  J. Chow,et al.  Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. , 1991, The Journal of antimicrobial chemotherapy.

[160]  A. Fraise,et al.  Disc Methods for Detecting Ampc B-lactamase-producing Clinical Isolates of Escherichia Coli and Klebsiella Pneumoniae , 2022 .

[161]  C. Bizet,et al.  Molecular Characterization of Chromosomal Class C β-Lactamase and Its Regulatory Gene in Ochrobactrum anthropi , 2001, Antimicrobial Agents and Chemotherapy.

[162]  S. Normark,et al.  Comparison of the overlapping frd and ampC operons of Escherichia coli with the corresponding DNA sequences in other gram-negative bacteria , 1983, Journal of bacteriology.

[163]  P. Bennett,et al.  IS CR Elements : Novel Gene-Capturing Systems of the 21 st Century ? , 2006 .

[164]  B. Wiedemann,et al.  Natural Antibiotic Susceptibility of Rahnella aquatilis and R. aquatilis-Related Strains , 2000, Journal of chemotherapy.

[165]  M. Pfaller,et al.  Animal and Human Multidrug-Resistant, Cephalosporin-ResistantSalmonella Isolates Expressing a Plasmid-Mediated CMY-2 AmpC β-Lactamase , 2000, Antimicrobial Agents and Chemotherapy.

[166]  K. Bush,et al.  Cloning and Biochemical Characterization of FOX-5, an AmpC-Type Plasmid-Encoded β-Lactamase from a New York CityKlebsiella pneumoniae Clinical Isolate , 2001, Antimicrobial Agents and Chemotherapy.

[167]  T. Sawai,et al.  Amino acid sequence, active-site residue, and effect of suicide inhibitors on cephalosporinase of Citrobacter freundii GN346. , 1988, Reviews of Infectious Diseases.

[168]  V. Miriagou,et al.  Plasmid-Encoded ACC-4, an Extended-Spectrum Cephalosporinase Variant from Escherichia coli , 2007, Antimicrobial Agents and Chemotherapy.

[169]  S. Cosgrove,et al.  Risk Factors for Emergence of Resistance to Broad-Spectrum Cephalosporins among Enterobacterspp , 2001, Antimicrobial Agents and Chemotherapy.

[170]  P. Bennett,et al.  Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of beta-lactamase expression in Aeromonas spp. , 2003, The Journal of antimicrobial chemotherapy.

[171]  K. Mitchelson,et al.  Multiplex Asymmetric PCR-Based Oligonucleotide Microarray for Detection of Drug Resistance Genes Containing Single Mutations in Enterobacteriaceae , 2007, Antimicrobial Agents and Chemotherapy.

[172]  I. Stock Natural Antimicrobial Susceptibility Patterns of Kluyvera ascorbata and Kluyvera cryocrescens Strains and Review of the Clinical Efficacy of Antimicrobial Agents Used for the Treatment of Kluyvera Infections , 2005, Journal of chemotherapy.

[173]  S. Mitsuhashi,et al.  Sequences of Homologous β-Lactamases from Clinical Isolates of Serratia marcescens with Different Substrate Specificities , 1998, Antimicrobial Agents and Chemotherapy.

[174]  P. Fey,et al.  β-Lactam Resistance and Enterobacteriaceae, United States , 2005, Emerging infectious diseases.

[175]  C. Smith,et al.  Molecular and genetic analysis of the Bacteroides uniformis cephalosporinase gene, cblA, encoding the species-specific beta-lactamase , 1994, Antimicrobial Agents and Chemotherapy.

[176]  M. Delmée,et al.  In vitro activity of temocillin against prevalent extended-spectrum beta-lactamases producing Enterobacteriaceae from Belgian intensive care units , 2007, European Journal of Clinical Microbiology & Infectious Diseases.

[177]  A. Hossain,et al.  Factors influencing gene expression and resistance for Gram-negative organisms expressing plasmid-encoded ampC genes of Enterobacter origin. , 2003, The Journal of antimicrobial chemotherapy.

[178]  R. Goering,et al.  Evidence for multiple forms of type I chromosomal beta-lactamase in Pseudomonas aeruginosa , 1986, Antimicrobial Agents and Chemotherapy.

[179]  J. Washington,et al.  Ceftazidime resistance in Hafnia alvei , 1993, Antimicrobial Agents and Chemotherapy.

[180]  F. Baquero,et al.  Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated beta-lactamase with two molecular variants , 1994, Antimicrobial Agents and Chemotherapy.

[181]  P. Nordmann,et al.  Cloning and functional characterization of the ambler class C beta-lactamase of Yersinia ruckeri. , 2006, FEMS microbiology letters.

[182]  M. Gazouli,et al.  Study of an outbreak of cefoxitin-resistant Klebsiella pneumoniae in a general hospital , 1997, Journal of clinical microbiology.

[183]  S. Weng,et al.  Characteristic analysis of the ampC gene encoding beta-lactamase from Photobacterium phosphoreum. , 2005, Biochemical and biophysical research communications.

[184]  L. Rice,et al.  Identification of a New Allelic Variant of the Acinetobacter baumannii Cephalosporinase , ADC-7-Lactamase : Defining a Unique Family of Class C Enzymes ‡ , 2005 .

[185]  J. Frère,et al.  Interaction of clavulanate with class C β‐lactamases , 1993 .

[186]  J. Frère,et al.  Cytosolic Intermediates for Cell Wall Biosynthesis and Degradation Control Inducible β-Lactam Resistance in Gram-Negative Bacteria , 1997, Cell.

[187]  B. Wiedemann,et al.  Natural antimicrobial susceptibilities of strains of 'unusual' Serratia species: S. ficaria, S. fonticola, S. odorifera, S. plymuthica and S. rubidaea. , 2003, The Journal of antimicrobial chemotherapy.

[188]  G. Bou,et al.  Molecular characterization of the gene encoding a new AmpC beta-lactamase in Acinetobacter baylyi. , 2007, The Journal of antimicrobial chemotherapy.

[189]  V. Jarlier,et al.  Novel Class A β-Lactamase Sed-1 fromCitrobacter sedlakii: Genetic Diversity of β-Lactamases within the Citrobacter Genus , 2001, Antimicrobial Agents and Chemotherapy.

[190]  T. Tan,et al.  Detection of plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis , 2007, Journal of Clinical Pathology.

[191]  M. Kaufmann,et al.  Wide geographic spread of diverse acquired AmpC beta-lactamases among Escherichia coli and Klebsiella spp. in the UK and Ireland. , 2006, The Journal of antimicrobial chemotherapy.

[192]  P. Coudron,et al.  Occurrence of Extended-Spectrum and AmpC Beta-Lactamases in Bloodstream Isolates of Klebsiella pneumoniae: Isolates Harbor Plasmid-Mediated FOX-5 and ACT-1 AmpC Beta-Lactamases , 2003, Journal of Clinical Microbiology.

[193]  I. Stemplinger,et al.  Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance , 1996, Antimicrobial agents and chemotherapy.

[194]  D. Livermore,et al.  Unusual tazobactam-sensitive AmpC-lactamase from two Escherichia coli isolates , 1998 .

[195]  S. Normark,et al.  Sequence of the Citrobacter freundii OS60 chromosomal ampCβ‐lactamase gene , 1986 .

[196]  Raymond K. Auerbach,et al.  Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis , 2007, PloS one.

[197]  J. Frère,et al.  Crystal structure of a cold‐adapted class C β‐lactamase , 2008, The FEBS journal.

[198]  Y. Chong,et al.  Extended broad spectrum β-lactamase in Klebsiella pneumoniae including resistance to cephamycins , 1989, Infection.

[199]  J. Wu,et al.  Characterization of carbapenem-non-susceptible Escherichia coli isolates from a university hospital in Taiwan. , 2008, The Journal of antimicrobial chemotherapy.

[200]  E. S. Moland,et al.  Surveillance of Community-Based Reservoirs Reveals the Presence of CTX-M, Imported AmpC, and OXA-30 β-Lactamases in Urine Isolates of Klebsiella pneumoniae and Escherichia coli in a U.S. Community , 2008, Antimicrobial Agents and Chemotherapy.

[201]  P. Grimont,et al.  β-Lactamases of Kluyvera ascorbata, Probable Progenitors of Some Plasmid-Encoded CTX-M Types , 2002, Antimicrobial Agents and Chemotherapy.

[202]  N. Caroff,et al.  AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. , 2003, The Journal of antimicrobial chemotherapy.

[203]  J. Claverie,et al.  The Genome Sequence of Rickettsia felis Identifies the First Putative Conjugative Plasmid in an Obligate Intracellular Parasite , 2005, PLoS biology.

[204]  N. Singh,et al.  Occurrence and detection of AmpC beta-lactamases among Gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. , 2003, The Journal of antimicrobial chemotherapy.

[205]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[206]  J. Frère,et al.  A survey of the kinetic parameters of class C beta-lactamases. Cephalosporins and other beta-lactam compounds. , 1988, The Biochemical journal.

[207]  T. Grundström,et al.  The E. coli β-lactamase attenuator mediates growth rate-dependent regulation , 1981, Nature.

[208]  B. Wiedemann,et al.  Natural Antibiotic Susceptibility of Ewingella americana Strains , 2003, Journal of chemotherapy.

[209]  N. Caroff,et al.  Analysis of the effects of -42 and -32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing ampC. , 2000, The Journal of antimicrobial chemotherapy.

[210]  Jennifer E. Stevenson,et al.  Human Salmonella and Concurrent Decreased Susceptibility to Quinolones and Extended-Spectrum Cephalosporins , 2007, Emerging infectious diseases.

[211]  M. Oh,et al.  Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. , 2004, The Journal of antimicrobial chemotherapy.

[212]  Wonkeun Song,et al.  Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC beta-lactamases and extended-spectrum beta-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. , 2007, Diagnostic microbiology and infectious disease.

[213]  P. Nordmann,et al.  Biochemical-Genetic Characterization of the Chromosomally Encoded Extended-Spectrum Class A β-Lactamase fromRahnella aquatilis , 2001, Antimicrobial Agents and Chemotherapy.

[214]  J. Wu,et al.  Complexity of Klebsiella pneumoniae Isolates Resistant to Both Cephamycins and Extended-Spectrum Cephalosporins at a Teaching Hospital in Taiwan , 2004, Journal of Clinical Microbiology.

[215]  Ronald N. Jones,et al.  Prevalence and Significance of a Negative Extended-Spectrum β-Lactamase (ESBL) Confirmation Test Result after a Positive ESBL Screening Test Result for Isolates of Escherichia coli and Klebsiella pneumoniae: Results from the SENTRY Asia-Pacific Surveillance Program , 2007, Journal of Clinical Microbiology.

[216]  Wonkeun Song,et al.  Evaluation of phenotypic screening methods for detecting plasmid-mediated AmpC beta-lactamases-producing isolates of Escherichia coli and Klebsiella pneumoniae. , 2005, Diagnostic microbiology and infectious disease.

[217]  D. Livermore,et al.  β-Lactamase Lability and Inducer Power of Newer β-Lactam Antibiotics in Relation to Their Activity Against β-Lactamase-Inducibility Mutants of Pseudomonas aeruginosa , 1987 .

[218]  N. Hanson,et al.  Role of ampD Homologs in Overproduction of AmpC in Clinical Isolates of Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[219]  Jung Hun Lee,et al.  Exact Location of the Region Responsible for the Extended Substrate Spectrum in Class C β-Lactamases , 2007, Antimicrobial Agents and Chemotherapy.

[220]  T. Grundström,et al.  ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[221]  P. Fey,et al.  Ceftriaxone-resistant salmonella infection acquired by a child from cattle. , 2000, The New England journal of medicine.

[222]  B. Wiedemann,et al.  Natural antimicrobial susceptibilities and biochemical profiles of Yersinia enterocolitica-like strains: Y. frederiksenii, Y. intermedia, Y. kristensenii and Y. rohdei. , 2003, FEMS immunology and medical microbiology.

[223]  Il Kwon Bae,et al.  Detection of Extended-Spectrum β-Lactamases by Using Boronic Acid as an AmpC β-Lactamase Inhibitor in Clinical Isolates of Klebsiella spp. and Escherichia coli , 2007, Journal of Clinical Microbiology.

[224]  M. Galas,et al.  Klebsiella pneumoniae Carbapenemase–2, Buenos Aires, Argentina , 2008, Emerging infectious diseases.

[225]  M. Maciá,et al.  Molecular Mechanisms of β-Lactam Resistance Mediated by AmpC Hyperproduction in Pseudomonas aeruginosa Clinical Strains , 2005, Antimicrobial Agents and Chemotherapy.

[226]  L. Burrows,et al.  Molecular mechanisms of cefoxitin resistance in Escherichia coli from the Toronto area hospitals. , 2001, Diagnostic microbiology and infectious disease.

[227]  S. Partridge Genetic Environment of ISEcp1 and blaACC-1 , 2007, Antimicrobial Agents and Chemotherapy.

[228]  P. Nordmann,et al.  Cloning, Sequence Analyses, Expression, and Distribution of ampC-ampR from Morganella morganii Clinical Isolates , 1999, Antimicrobial Agents and Chemotherapy.

[229]  J. M. García Lobo,et al.  Cloning of chromosomal beta-lactamase genes from Yersinia enterocolitica. , 1991, Journal of general microbiology.

[230]  J. Frère,et al.  A class-A beta-lactamase from Pseudomonas stutzeri that is highly active against monobactams and cefotaxime. , 1993, Biochemical Journal.

[231]  D. Livermore,et al.  Prevalence and mechanisms of cephalosporin resistance in Enterobacteriaceae in London and South-East England. , 2006, The Journal of antimicrobial chemotherapy.

[232]  S. R. Fitzsimmons,et al.  Beta-lactamases and detection of beta-lactam resistance in Enterobacter spp , 1997, Antimicrobial agents and chemotherapy.

[233]  J. Mainardi,et al.  Carbapenem resistance in a clinical isolate of Citrobacter freundii , 1997, Antimicrobial agents and chemotherapy.

[234]  J. Frère,et al.  Properties of a class C beta-lactamase from Serratia marcescens. , 1986, The Biochemical journal.

[235]  M. Mulvey,et al.  ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates. , 2007, FEMS microbiology letters.

[236]  N. Woodford,et al.  Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 beta-lactamases co-mediated by porin loss. , 2007, International journal of antimicrobial agents.

[237]  P. Nordmann,et al.  AmpC β-Lactamase in an Escherichia coli Clinical Isolate Confers Resistance to Expanded-Spectrum Cephalosporins , 2004, Antimicrobial Agents and Chemotherapy.

[238]  A. Oliver,et al.  Characterization of Clinical Isolates ofKlebsiella pneumoniae from 19 Laboratories Using the National Committee for Clinical Laboratory Standards Extended-Spectrum β-Lactamase Detection Methods , 2001, Journal of Clinical Microbiology.

[239]  N. Hanson,et al.  The ACT-1 plasmid-encoded AmpC β-lactamase is inducible: detection in a complex β-lactamase background , 2002 .

[240]  P. Nordmann,et al.  Heterogeneity of AmpC Cephalosporinases ofHafnia alvei Clinical Isolates Expressing Inducible or Constitutive Ceftazidime Resistance Phenotypes , 2000, Antimicrobial Agents and Chemotherapy.

[241]  G. Jacoby,et al.  Sequence of the MIR-1 β-Lactamase Gene , 1999, Antimicrobial Agents and Chemotherapy.

[242]  Y. Sumino,et al.  Molecular analysis of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90 , 2004, Applied Microbiology and Biotechnology.

[243]  K. Hopkins,et al.  Characterisation of CTX-M and AmpC genes in human isolates of Escherichia coli identified between 1995 and 2003 in England and Wales. , 2006, International journal of antimicrobial agents.

[244]  S. Choi,et al.  Emergence of Antibiotic Resistance during Therapy for Infections Caused by Enterobacteriaceae Producing AmpC β-Lactamase: Implications for Antibiotic Use , 2007, Antimicrobial Agents and Chemotherapy.

[245]  M. Avison,et al.  Beta-lactam resistance and beta-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. , 2006, The Journal of antimicrobial chemotherapy.

[246]  P. Nordmann,et al.  Chromosome-Encoded Narrow-Spectrum Ambler Class A β-Lactamase GIL-1 from Citrobacter gillenii , 2007, Antimicrobial Agents and Chemotherapy.

[247]  Anette Engelhardt Evaluation of a New Etest Strip for AmpC Detection Using a Large Collection of Genotypically Characterized Strains , 2008 .

[248]  L. Gutmann,et al.  In vitro activity of combinations of beta-lactam antibiotics with beta-lactamase inhibitors against cephalosporinase-producing bacteria , 1989, European Journal of Clinical Microbiology and Infectious Diseases.

[249]  K. Thomson,et al.  Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests , 1992, Antimicrobial Agents and Chemotherapy.

[250]  M. Inoue,et al.  Gene Mutations Responsible for Overexpression of AmpC β-Lactamase in Some Clinical Isolates of Enterobacter cloacae , 2005, Journal of Clinical Microbiology.

[251]  K. Hopkins,et al.  New plasmid-mediated AmpC beta-lactamase (CMY-21) in Escherichia coli isolated in the UK. , 2006, International journal of antimicrobial agents.

[252]  B. Shoichet,et al.  The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution. , 2006, Journal of the American Chemical Society.

[253]  P. Courvalin,et al.  Emergence of imipenem resistance in Klebsiella pneumoniae owing to combination of plasmid-mediated CMY-4 and permeability alteration. , 2000, The Journal of antimicrobial chemotherapy.

[254]  Y. Ike,et al.  Horizontal Transfer of blaCMY-Bearing Plasmids among Clinical Escherichia coli and Klebsiella pneumoniae Isolates and Emergence of Cefepime-Hydrolyzing CMY-19 , 2006, Antimicrobial Agents and Chemotherapy.

[255]  D. Livermore Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[256]  M. Nir,et al.  β‐lactamases in Shigella , 1992 .

[257]  L. Burman,et al.  Resistance of Escherichia coli to Penicillins: Identification of the Structural Gene for the Chromosomal Penicillinase , 1973, Journal of bacteriology.

[258]  J. Quinn,et al.  Broad resistance due to plasmid-mediated AmpC beta-lactamases in clinical isolates of Escherichia coli. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[259]  K. Nordström,et al.  Resistance of Escherichia coli to Penicillins VIII. Physiology of a Class II Ampicillin-Resistant Mutant , 1970, Journal of bacteriology.

[260]  M. B. Rogers,et al.  Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases , 1993, Antimicrobial Agents and Chemotherapy.

[261]  Ronald N. Jones,et al.  Comparative activity of meropenem in US medical centers (2007): initiating the 2nd decade of MYSTIC program surveillance. , 2008, Diagnostic microbiology and infectious disease.

[262]  Jung Hun Lee,et al.  Structural basis for the extended substrate spectrum of CMY‐10, a plasmid‐encoded class C β‐lactamase , 2006, Molecular microbiology.

[263]  E. Sadowy,et al.  Molecular Survey of β-Lactamases Conferring Resistance to Newer β-Lactams in Enterobacteriaceae Isolates from Polish Hospitals , 2008, Antimicrobial Agents and Chemotherapy.

[264]  L. Alksne,et al.  Expression of the AsbA1, OXA-12, and AsbM1 beta-lactamases in Aeromonas jandaei AER 14 is coordinated by a two-component regulon , 1997, Journal of bacteriology.

[265]  C. Sanders,et al.  Clavulanate Induces Expression of the Pseudomonas aeruginosa AmpC Cephalosporinase at Physiologically Relevant Concentrations and Antagonizes the Antibacterial Activity of Ticarcillin , 1999, Antimicrobial Agents and Chemotherapy.

[266]  S. Normark,et al.  ampC beta-lactamase hyperproduction in Escherichia coli: natural ampicillin resistance generated by horizontal chromosomal DNA transfer from Shigella. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[267]  G. Barnaud,et al.  Salmonella enteritidis: AmpC Plasmid-Mediated Inducible β-Lactamase (DHA-1) with anampR Gene from Morganella morganii , 1998, Antimicrobial Agents and Chemotherapy.

[268]  Barry G. Hall,et al.  Evolution of the serine β-lactamases: past, present and future , 2004 .

[269]  M. Francia,et al.  Nucleotide sequence of the ampC-ampR region from the chromosome of Yersinia enterocolitica , 1992, Antimicrobial Agents and Chemotherapy.

[270]  A. Philippon,et al.  BUT-1: a new member in the chromosomal inducible class C beta-lactamases family from a clinical isolate of Buttiauxella sp. , 2002, FEMS microbiology letters.

[271]  G. Jacoby,et al.  In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins , 1996, Antimicrobial agents and chemotherapy.

[272]  J. Lamotte‐Brasseur,et al.  Enzymes from cold-adapted microorganisms. The class C beta-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. , 1997, European journal of biochemistry.

[273]  T. Gootz,et al.  High-Level Carbapenem Resistance in a Klebsiella pneumoniae Clinical Isolate Is Due to the Combination of blaACT-1 β-Lactamase Production, Porin OmpK35/36 Insertional Inactivation, and Down-Regulation of the Phosphate Transport Porin PhoE , 2006, Antimicrobial Agents and Chemotherapy.

[274]  A. Oliver,et al.  Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa Isolates from Spanish Hospitals , 2007, Antimicrobial Agents and Chemotherapy.

[275]  S. Mitsuhashi,et al.  Purification and properties of a cephalosporinase from Enterobacter cloacae , 1980, Antimicrobial Agents and Chemotherapy.

[276]  N. Gotoh,et al.  Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates , 2001, Antimicrobial Agents and Chemotherapy.

[277]  Allison M. Land,et al.  Molecular Characterization of Cefoxitin-Resistant Escherichia coli from Canadian Hospitals , 2005, Antimicrobial Agents and Chemotherapy.

[278]  P. Coudron Inhibitor-Based Methods for Detection of Plasmid-Mediated AmpC β-Lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis , 2005, Journal of Clinical Microbiology.

[279]  Xiaofei Jiang,et al.  Prevalence of Plasmid-Mediated AmpC β-Lactamases in a Chinese University Hospital from 2003 to 2005: First Report of CMY-2-Type AmpC β-Lactamase Resistance in China , 2007, Journal of Clinical Microbiology.

[280]  K. Thomson Controversies about extended-spectrum and AmpC beta-lactamases. , 2001, Emerging infectious diseases.

[281]  L. Martínez-Martínez,et al.  Activities of Imipenem and Cephalosporins against Clonally Related Strains of Escherichia coli Hyperproducing Chromosomal β-Lactamase and Showing Altered Porin Profiles , 2000, Antimicrobial Agents and Chemotherapy.

[282]  A. Hossain,et al.  Plasmid-encoded functions compensate for the biological cost of AmpC overexpression in a clinical isolate of Salmonella typhimurium. , 2004, The Journal of antimicrobial chemotherapy.

[283]  J. Frère,et al.  The roles of residues Tyr150, Glu272, and His314 in class C β‐lactamases , 1996 .

[284]  N. Curtis,et al.  Inducible Type I βlactamases of Gram-negative bacteria and resistance to βlactam antibiotics , 1986 .

[285]  K. Towner,et al.  Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. , 1990, The Journal of antimicrobial chemotherapy.

[286]  G. French,et al.  Carbapenem Resistance in Escherichia coli Associated with Plasmid-Determined CMY-4 β-Lactamase Production and Loss of an Outer Membrane Protein , 1999, Antimicrobial Agents and Chemotherapy.

[287]  K. Bush,et al.  Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme , 1994, Antimicrobial Agents and Chemotherapy.

[288]  S T Cole,et al.  Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. , 1986, The EMBO journal.

[289]  D. Landman,et al.  Correlation of Antimicrobial Resistance with β-Lactamases, the OmpA-Like Porin, and Efflux Pumps in Clinical Isolates of Acinetobacter baumannii Endemic to New York City , 2008, Antimicrobial Agents and Chemotherapy.

[290]  K. Bush,et al.  Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein , 1997, Antimicrobial agents and chemotherapy.

[291]  P. Coudron,et al.  Occurrence and Detection of AmpC Beta-Lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates at a Veterans Medical Center , 2000, Journal of Clinical Microbiology.

[292]  L. Martínez-Martínez,et al.  Development of Resistance during Antimicrobial Therapy Caused by Insertion Sequence Interruption of Porin Genes , 1999, Antimicrobial Agents and Chemotherapy.

[293]  W. Farrar,et al.  β-Lactamase Activity in Chromobacterium violaceum , 1976 .

[294]  N. Woodford,et al.  Activity of temocillin against prevalent ESBL- and AmpC-producing Enterobacteriaceae from south-east England. , 2006, The Journal of antimicrobial chemotherapy.

[295]  T. Sawai,et al.  Structure of the extended-spectrum class C beta-lactamase of Enterobacter cloacae GC1, a natural mutant with a tandem tripeptide insertion. , 1999, Biochemistry.

[296]  N. Caroff,et al.  Most Escherichia coli strains overproducing chromosomal AmpC beta-lactamase belong to phylogenetic group A. , 2007, The Journal of antimicrobial chemotherapy.

[297]  S. Pournaras,et al.  First occurrence of KPC-2-possessing Klebsiella pneumoniae in a Greek hospital and recommendation for detection with boronic acid disc tests. , 2008, The Journal of antimicrobial chemotherapy.

[298]  S. Weng,et al.  Identification and characteristic analysis of the ampC gene encoding beta-lactamase from Vibrio fischeri. , 2004, Biochemical and biophysical research communications.

[299]  P. Bennett,et al.  ISCR Elements: Novel Gene-Capturing Systems of the 21st Century? , 2006, Microbiology and Molecular Biology Reviews.

[300]  E. Nelson,et al.  Genetic Environment and Transcription of ampC in an Acinetobacter baumannii Clinical Isolate , 2004, Antimicrobial Agents and Chemotherapy.

[301]  T. Grundström,et al.  Active sites of beta-lactamases. The chromosomal beta-lactamases of Pseudomonas aeruginosa and Escherichia coli. , 1982, The Biochemical journal.

[302]  S. Cole Nucleotide sequence and comparative analysis of the frd operon encoding the fumarate reductase of Proteus vulgaris. Extensive sequence divergence of the membrane anchors and absence of an frd-linked ampC cephalosporinase gene. , 1987, European journal of biochemistry.

[303]  E. S. Moland,et al.  Occurrence of Newer β-Lactamases in Klebsiella pneumoniae Isolates from 24 U.S. Hospitals , 2002, Antimicrobial Agents and Chemotherapy.

[304]  J. Heritage,et al.  Transcontinental importation into the UK of Escherichia coli expressing a plasmid-mediated AmpC-type beta-lactamase exposed during an outbreak of SHV-5 extended-spectrum beta-lactamase in a Leeds hospital. , 1997, The Journal of antimicrobial chemotherapy.

[305]  M. Matsuura,et al.  Purification and biochemical properties of beta-lactamase produced by Proteus rettgeri , 1980, Antimicrobial Agents and Chemotherapy.

[306]  A. Oliver,et al.  Benefit of Having Multiple ampD Genes for Acquiring β-Lactam Resistance without Losing Fitness and Virulence in Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[307]  Annie Wong-Beringer,et al.  Molecular correlation for the treatment outcomes in bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae with reduced susceptibility to ceftazidime. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[309]  K. Yuen,et al.  Cloning and Characterization of a Chromosomal Class C β-Lactamase and Its Regulatory Gene in Laribacter hongkongensis , 2005, Antimicrobial Agents and Chemotherapy.

[310]  E. Bingen,et al.  First Detection of the Ambler Class C 1 AmpC β-Lactamase in Citrobacter freundii by a New, Simple Double-Disk Synergy Test , 2006, Journal of Clinical Microbiology.

[311]  D. Church,et al.  Association between Handling of Pet Treats and Infection with Salmonella enterica Serotype Newport Expressing the AmpC β-Lactamase, CMY-2 , 2003, Journal of Clinical Microbiology.

[312]  P. Ramnani,et al.  Detection and assay of beta-lactamases in clinical and non-clinical strains of Yersinia enterocolitica biovar 1A. , 2004, The Journal of antimicrobial chemotherapy.

[313]  Ronald N. Jones,et al.  Inducible amp C beta-lactamase producing gram-negative bacilli from blood stream infections: frequency, antimicrobial susceptibility, and molecular epidemiology in a national surveillance program (SCOPE). , 1997, Diagnostic microbiology and infectious disease.

[314]  M. Ishiguro,et al.  Inhibitor-Sensitive AmpC β-Lactamase Variant Produced by an Escherichia coli Clinical Isolate Resistant to Oxyiminocephalosporins and Cephamycins , 2004, Antimicrobial Agents and Chemotherapy.

[315]  T. Arakawa,et al.  Highly efficient renaturation of β‐lactamase isolated from moderately halophilic bacteria , 2004, FEBS letters.

[316]  D. Raoult,et al.  Successive Emergence of Enterobacter aerogenes Strains Resistant to Imipenem and Colistin in a Patient , 2005, Antimicrobial Agents and Chemotherapy.

[317]  Ronald N. Jones,et al.  Tigecycline activity tested against 26,474 bloodstream infection isolates: a collection from 6 continents. , 2005, Diagnostic microbiology and infectious disease.

[318]  H. Nikaido,et al.  Role of beta-lactam hydrolysis in the mechanism of resistance of a beta-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum beta-lactams , 1985, Antimicrobial Agents and Chemotherapy.

[319]  N. Caroff,et al.  Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum beta-lactamase production. , 1999, FEMS microbiology letters.

[320]  C. Sanders,et al.  Type I β-Lactamases of Gram-Negative Bacteria: Interactions with β-Lactam Antibiotics , 1986 .

[321]  J. Frère,et al.  Molecular evolution of bacterial β-lactam resistance , 1996 .

[322]  A. Mentis,et al.  Imipenem resistance in Enterobacter aerogenes is associated with derepression of chromosomal cephalosporinases and impaired permeability. , 1992, FEMS microbiology letters.

[323]  S. Mittal,et al.  Characteristics of β-lactamases and their genes (blaA and blaB) in Yersinia intermedia and Y. frederiksenii , 2007, BMC Microbiology.

[324]  M. Gazouli,et al.  Transferable class C beta-lactamases in Escherichia coli strains isolated in Greek hospitals and characterization of two enzyme variants (LAT-3 and LAT-4) closely related to Citrobacter freundii AmpC beta-lactamase. , 1998, The Journal of antimicrobial chemotherapy.

[325]  K. Young,et al.  AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli , 1997, Journal of bacteriology.

[326]  S. Normark,et al.  Common evolutionary origin of chromosomal beta-lactamase genes in enterobacteria , 1982, Journal of bacteriology.

[327]  P. Nordmann,et al.  Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli. , 2008, FEMS microbiology letters.

[328]  George A. Jacoby,et al.  Plasmid-Determined AmpC-Type β-Lactamases , 2002, Antimicrobial Agents and Chemotherapy.

[329]  G. Rossolini,et al.  CMY-16, a Novel Acquired AmpC-Type β-Lactamase of the CMY/LAT Lineage in Multifocal Monophyletic Isolates of Proteus mirabilis from Northern Italy , 2006, Antimicrobial Agents and Chemotherapy.

[330]  J. Frère,et al.  Characterization of OXA-29 from Legionella(Fluoribacter) gormanii: Molecular Class D β-Lactamase with Unusual Properties , 2001, Antimicrobial Agents and Chemotherapy.

[331]  S. Normark,et al.  Identification of a novel ampC beta‐lactamase promoter in a clinical isolate of Escherichia coli. , 1982, The EMBO journal.

[332]  B. Hall,et al.  Experimental prediction of the evolution of cefepime resistance from the CMY-2 AmpC beta-lactamase. , 2003, Genetics.

[333]  S. Mobashery,et al.  Class C β-Lactamases Operate at the Diffusion Limit for Turnover of Their Preferred Cephalosporin Substrates , 1999, Antimicrobial Agents and Chemotherapy.

[334]  J. Pachón,et al.  Efficacy of Cefepime and Imipenem in Experimental Murine Pneumonia Caused by Porin-Deficient Klebsiella pneumoniae Producing CMY-2 β-Lactamase , 2005, Antimicrobial Agents and Chemotherapy.

[335]  D. Church,et al.  Population-based Laboratory Surveillance for AmpC β-Lactamase–producing Escherichia coli, Calgary , 2007, Emerging infectious diseases.

[336]  E. Abraham,et al.  An Enzyme from Bacteria able to Destroy Penicillin , 1940, Nature.

[337]  M. Pavelka,et al.  Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics , 2005 .

[338]  S. Normark,et al.  Insertion of IS2 creates a novel ampC promoter in Escherichia coli , 1983, Cell.

[339]  B. Abdalhamid,et al.  Characterization of beta-lactamases responsible for resistance to extended-spectrum cephalosporins in Escherichia coli and Salmonella enterica strains from food-producing animals in the United Kingdom. , 2004, Microbial drug resistance.

[340]  J M Ghuysen,et al.  Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins , 1991, Antimicrobial Agents and Chemotherapy.

[341]  Y. Arakawa,et al.  Molecular Characterization of a Cephamycin-Hydrolyzing and Inhibitor-Resistant Class A β-Lactamase, GES-4, Possessing a Single G170S Substitution in the Ω-Loop , 2004, Antimicrobial Agents and Chemotherapy.

[342]  L. Martínez-Martínez,et al.  Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae. , 2000, The Journal of antimicrobial chemotherapy.

[343]  A. Fraise,et al.  Activity of mecillinam against AmpC β-lactamase-producing Escherichia coli , 2006 .

[344]  B. Wiedemann,et al.  Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. , 2003, International journal of antimicrobial agents.

[345]  L. Hungerford,et al.  Extended-Spectrum-Cephalosporin Resistance in Salmonella enterica Isolates of Animal Origin , 2004, Antimicrobial Agents and Chemotherapy.

[346]  D. Livermore,et al.  Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[347]  R. Frei,et al.  Plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: prevalence at a Swiss university hospital and occurrence of the different molecular types in Switzerland. , 2007, The Journal of antimicrobial chemotherapy.

[348]  P. Nordmann,et al.  ISEcp1B-Mediated Transposition of blaCTX-M in Escherichia coli , 2005, Antimicrobial Agents and Chemotherapy.

[349]  S. Normark,et al.  Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta‐lactamase induction. , 1994, The EMBO journal.

[350]  J. Mcgowan,et al.  Carbapenem Resistance in a Clinical Isolate of Enterobacter aerogenes Is Associated with Decreased Expression of OmpF and OmpC Porin Analogs , 2002, Antimicrobial Agents and Chemotherapy.

[351]  Thomas E. Besser,et al.  Variability in the Region Downstream of the blaCMY-2 β-Lactamase Gene in Escherichia coli and Salmonella enterica Plasmids , 2006, Antimicrobial Agents and Chemotherapy.

[352]  I. Chou,et al.  The Genomic Sequence of the Accidental Pathogen Legionella pneumophila , 2004, Science.