Simulation of the DC Plasma in Carbon Nanotube Growth

A model for the dc plasma used in carbon nanotube growth is presented, and one-dimensional simulations of an acetylene/ammonia/argon system are performed. The effect of dc bias is illustrated by examining electron temperature, electron and ion densities, and neutral densities. Introducing a tungsten filament in the dc plasma, as in hot filament chemical vapor deposition with plasma assistance, shows negligible influence on the system characteristics.

[1]  M. Meyyappan,et al.  A coupled plasma and sheath model for high density reactors , 2002 .

[2]  Christopher E. Dateo,et al.  Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics. , 2002, Journal of Nanoscience and Nanotechnology.

[3]  Christopher E. Dateo,et al.  Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis. , 2002, Journal of Nanoscience and Nanotechnology.

[4]  R. Singer,et al.  Structural changes of tungsten heating filaments during CVD of diamond , 2002 .

[5]  Chia-Fu Chen,et al.  Bias effect on the growth of carbon nanotips using microwave plasma chemical vapor deposition , 2002 .

[6]  N. Suetin,et al.  Effects of NH3 and N2 additions to hot filament activated CH4/H2 gas mixtures , 2002 .

[7]  M. Meyyappan,et al.  Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy , 2002 .

[8]  J. M. Kim,et al.  NH3 effect on the growth of carbon nanotubes on glass substrate in plasma enhanced chemical vapor deposition , 2002 .

[9]  M. Meyyappan,et al.  Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor , 2002 .

[10]  N. Suetin,et al.  Investigations of the gas phase chemistry in a hot filament CVD reactor operating with CH4/N2/H2 and CH4/NH3/H2 gas mixtures , 2002 .

[11]  G. Amaratunga,et al.  Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy , 2002 .

[12]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[13]  Michael L. Simpson,et al.  Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition , 2001 .

[14]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[15]  M. L. Simpson,et al.  Shaping carbon nanostructures by controlling the synthesis process , 2001 .

[16]  M. Tanemura,et al.  Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters , 2001 .

[17]  S. Nishino,et al.  Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted dc plasma chemical vapor deposition in a CH4/H2 plasma , 2001 .

[18]  W. C. Tjiu,et al.  Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition , 2001 .

[19]  N. Suetin,et al.  Experimental data vs. 3-D model calculations of HFCVD processes: correlations and discrepancies , 2001 .

[20]  Yayi Wei,et al.  Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition , 2001 .

[21]  Chong-Yun Park,et al.  Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition , 2000 .

[22]  M. Okai,et al.  Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition , 2000 .

[23]  O. Zhou,et al.  Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition , 2000 .

[24]  Sungho Jin,et al.  Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition , 2000 .

[25]  Seong Chu Lim,et al.  Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 2000 .

[26]  Otto Zhou,et al.  Plasma-induced alignment of carbon nanotubes , 2000 .

[27]  G. Park,et al.  Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature , 2000 .

[28]  Soon Fatt Yoon,et al.  Carbon films with high density nanotubes produced using microwave plasma assisted CVD , 2000 .

[29]  Vladimir I. Merkulov,et al.  Patterned growth of individual and multiple vertically aligned carbon nanofibers , 2000 .

[30]  M. Meyyappan,et al.  A Continuum Model for the Inductively Coupled Plasma Reactor in Semiconductor Processing , 1999 .

[31]  S. Tsai,et al.  Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis , 1999 .

[32]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[33]  L. Schlapbach,et al.  Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma , 1998 .

[34]  D. J. Johnson,et al.  Plasma-induced low-temperature growth of graphitic nanofibers on nickel substrates , 1998 .

[35]  N. Suetin,et al.  Three-dimensional simulation of a HFCVD reactor , 1998 .

[36]  D. Gruen,et al.  Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 1998 .

[37]  T. Durakiewicz,et al.  Computation of time-dependent temperature distribution along a filament heated in vacuo by electric pulses , 1998 .

[38]  A. Cutler,et al.  CARBON DEPOSITION AND HYDROCARBON FORMATION ON GROUP VIII METAL CATALYSTS , 1998 .

[39]  V. Anicich,et al.  Ion-molecule chemistry in Titan's ionosphere , 1997 .

[40]  Zhong Lin Wang,et al.  Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition , 1997 .

[41]  N. Suetin,et al.  Two-dimensional simulation of a hot-filament chemical vapor deposition reactor , 1996 .

[42]  O. Deutschmann,et al.  Simulation of reactive flow in filament‐assisted diamond growth including hydrogen surface chemistry , 1996 .

[43]  J. W. Fleming,et al.  SPATIALLY RESOLVED ATOMIC HYDROGEN CONCENTRATIONS AND MOLECULAR HYDROGEN TEMPERATURE PROFILES IN THE CHEMICAL-VAPOR DEPOSITION OF DIAMOND , 1995 .

[44]  L. Stobiński,et al.  Rate of H2 atomization over the surface of a hot tungsten filament , 1995 .

[45]  D. Dandy,et al.  Experimental measurements and numerical simulations of the gas composition in a hot-filament-assisted diamond chemical-vapor-deposition reactor , 1994 .

[46]  D. Dandy,et al.  Effects of temperature and filament poisoning on diamond growth in hot-filament reactors , 1994 .

[47]  H. F. Winters,et al.  Interaction of hydrogen, methane, ethylene, and cyclopentane with hot tungsten: Implications for the growth of diamond films , 1994 .

[48]  V. Anicich Evaluated Bimolecular Ion‐Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds , 1993 .

[49]  M. Tsuji,et al.  Dissociative charge‐transfer reactions of Ar+ with simple aliphatic hydrocarbons at thermal energy , 1993 .

[50]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[51]  Wang,et al.  Detailed surface and gas-phase chemical kinetics of diamond deposition. , 1991, Physical review. B, Condensed matter.

[52]  D. Goodwin,et al.  NUMERICAL MODELING OF THE FILAMENT-ASSISTED DIAMOND GROWTH ENVIRONMENT , 1990 .

[53]  T. DebRoy,et al.  Role of heat transfer and fluid flow in the chemical vapor deposition of diamond , 1990 .

[54]  J. P. Kreskovsky,et al.  Glow discharge simulation through solutions to the moments of the Boltzmann transport equation , 1990 .

[55]  M. Frenklach The role of hydrogen in vapor deposition of diamond , 1989 .

[56]  Stephen J. Harris,et al.  Measurement of stable species present during filament‐assisted diamond growth , 1988 .

[57]  K. Jensen,et al.  A Continuum Model of DC and RF Discharges , 1986, IEEE Transactions on Plasma Science.

[58]  P. M. Chung Near-surface electron temperature of weakly ionized plasma according to kinetic theory. , 1969 .

[59]  D. Hash,et al.  Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes , 2003 .

[60]  S. Yu,et al.  Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor deposition , 2002 .

[61]  Robert E. Wilson,et al.  Fundamentals of momentum, heat, and mass transfer , 1969 .