A symplectic Runge-Kutta-Nyström method with minimal phase-lag
暂无分享,去创建一个
[1] Hans Van de Vyver. A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..
[3] T. E. Simos,et al. Symplectic and trigonometrically fitted symplectic methods of second and third order , 2006 .
[4] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[5] Mari Paz Calvo,et al. The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..
[6] L. Brusa,et al. A one‐step method for direct integration of structural dynamic equations , 1980 .
[7] José-Miguel Farto,et al. An algorithm for the systematic construction of solutions to perturbed problems , 1998 .
[8] Zacharoula Kalogiratou,et al. Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2003 .
[9] Manuel Calvo,et al. Explicit Runge-Kutta methods for initial value problems with oscillating solutions , 1996 .
[10] S. N. Papakostas,et al. High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..
[11] Jesús Vigo-Aguiar,et al. AN ADAPTED SYMPLECTIC INTEGRATOR FOR HAMILTONIAN PROBLEMS , 2001 .
[12] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[13] Zacharoula Kalogiratou,et al. Trigonometrically and Exponentially fitted Symplectic Methods of third order for the Numerical Integration of the Schrödinger Equation , 2005 .
[14] Robert D. Skeel,et al. An explicit Runge-Kutta-Nystro¨m method is canonical if and only if its adjoint is explicit , 1992 .
[15] T. E. Simos,et al. Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[17] John P. Coleman. Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .