A symplectic Runge-Kutta-Nyström method with minimal phase-lag

Abstract In this Letter we introduce a symplectic explicit RKN method for Hamiltonian systems with periodical solutions. The method has algebraic order three and phase-lag order six at a cost of three function evaluations per step. Numerical experiments show the relevance of the developed algorithm. It is found that the new method is much more efficient than the standard symplectic fourth-order method [M.P. Calvo, J.M. Sanz-Serna, SIAM J. Sci. Comput. 14 (1993) 936].

[1]  Hans Van de Vyver A fourth-order symplectic exponentially fitted integrator , 2006, Comput. Phys. Commun..

[3]  T. E. Simos,et al.  Symplectic and trigonometrically fitted symplectic methods of second and third order , 2006 .

[4]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[5]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[6]  L. Brusa,et al.  A one‐step method for direct integration of structural dynamic equations , 1980 .

[7]  José-Miguel Farto,et al.  An algorithm for the systematic construction of solutions to perturbed problems , 1998 .

[8]  Zacharoula Kalogiratou,et al.  Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2003 .

[9]  Manuel Calvo,et al.  Explicit Runge-Kutta methods for initial value problems with oscillating solutions , 1996 .

[10]  S. N. Papakostas,et al.  High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..

[11]  Jesús Vigo-Aguiar,et al.  AN ADAPTED SYMPLECTIC INTEGRATOR FOR HAMILTONIAN PROBLEMS , 2001 .

[12]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[13]  Zacharoula Kalogiratou,et al.  Trigonometrically and Exponentially fitted Symplectic Methods of third order for the Numerical Integration of the Schrödinger Equation , 2005 .

[14]  Robert D. Skeel,et al.  An explicit Runge-Kutta-Nystro¨m method is canonical if and only if its adjoint is explicit , 1992 .

[15]  T. E. Simos,et al.  Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[17]  John P. Coleman Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .