Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17–29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and nonsignificant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn’s disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders. The current classification of psychiatric disorders reflects clinical syndromes with largely unknown etiology and is based on historical descriptions provided by prominent clinicians over the last 125 years. Family (including twin and adoption) studies provide consistent evidence that genetic factors are involved in these syndromes1. In principle, family studies allow quantification of the shared genetic etiology of disorders, through the estimation of heritability (the proportion of variance in liability attributable to additive genetic factors), and the genetic correlation between them. However, difficulties in ascertaining samples of sufficient size mean that there are few estimates of genetic correlations. Nonetheless, family studies suggest correlated familial genetic liabilities to bipolar disorder and schizophrenia2,3, bipolar disorder and major depressive disorder2,3, and ASD and ADHD4–6 (Supplementary Table 1). Phenotypic and genetic overlap has also been suggested for ASD and schizophrenia7–11, ASD and bipolar disorder9, bipolar disorder and ADHD12, and major depressive disorder and ADHD13. Some of these relationships have been supported by recent evidence of shared molecular risk factors14–16, but the extent of these relationships remains unclear, given the small proportion of risk associated with individually identified variants. The genomics era provides new opportunities to explore the shared genetic etiology of disorders. Genome-wide association studies (GWAS) assess common genetic NIH Public Access Author Manuscript Nat Genet. Author manuscript; available in PMC 2014 September 01. Published in final edited form as: Nat Genet. 2013 September ; 45(9): 984–994. doi:10.1038/ng.2711. N IH -P A A uhor M anscript N IH -P A A uhor M anscript N IH -P A A uhor M anscript polymorphisms (for example, SNPs) at several hundred thousand positions in the genome. © 2013 Nature America, Inc. All rights reserved. Correspondence should be addressed to N.R.W. (naomi.wray@uq.edu.au). *A full list of authors and affiliations appears at the end of the article. 36Université Denis Diderot, Paris, France. 37Assistance Publique–Hôpitaux de Paris (AP-HP), Groupe Hospitalier Saint-Louis, Lariboisiere, F Widal, Departement de Psychiatrie, Paris, France. 42Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7224, Paris, France. 70Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany. 77Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain. 86Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. 146Center for Psychiatric Neuroscience, The Feinstein Institute of Medical Research, Manhasset, New York, USA. 195Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands. 224Clinical Psychology and Epidemiology, University of Basel, Basel, Switzerland. 230Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario Canada. 235BioFIG—Center for Biodiversity, Functional and Integrative Genomics, Campus da FCUL, Campo Grande, Lisbon, Portugal. 240Division of Genetics, Children’s Hospital Boston, Boston, Massachusetts, USA. 241Department of Neurology, Harvard Medical School Center for Life Sciences, Boston, Massachusetts, USA. URLs. PGC, https://pgc.unc.edu/; Genetic Cluster Computer, http://www.geneticcluster.org/; GCTA, http:// www.complextraitgenomics.com/software/gcta/. Note: Any Supplementary Information and Source Data files are available in the online version of the paper. AUTHOR CONTRIBUTIONS Project conception: K.S.K., N.R.W. and J.W.S. Analysis: S.H.L. and N.R.W. Writing of the manuscript: N.R.W., S.H.L., K.S.K. and S.V.F. Quality control for PGC data: S. Ripke and B.M.N. Revisions to the manuscript: S.M.P., J.W.S., R.H.P., B.J.M., P.F.S., A.T., C.O., M.J.D., R.D.O. and J.B. Statistical advice: M.E.G. and J.S.W. Data access: D.P. PGC Workgroup Chairs: M.J.D. (analysis), S.V.F. (ADHD), M.J.D. and B.D. (co-chairs ASD), J.K. and P. Sklar (co-chairs bipolar disorder), P.F.S. (major depressive disorder), M.C.O. (schizophrenia) and J.W.S. and K.S.K. (co-chairs cross-disorder group). Collection, genotyping and analysis for PGC Working Groups. PGC ADHD Working Group: B.M.N., S.V.F., A.T., R.A., P.A., T. Banaschewski, M. Bayés, J.B., J.K.B., M.C., B.C., J.C., A.E.D., R.P.E., J.E., B.F., C.M.F., L. Kent, J.K., K.-P.L., S.K.L., J.M., J.J.M., S.E.M., J.M.S., A. Miranda, S.F.N., R.D.O., J.A.R.-Q., A. Reif, M. Ribasés, H.R., A. Rothenberger, J.A.S., R.S., S.L. Smalley, E.J.S.S.-B., H.-C.S., A.A.T. and N.W. PGC ASD Working Group: R.A., D.E.A., A.J.B., A.B., C.B., J.D. Buxbaum, A. Chakravarti, E.H.C., H.C., M.L.C., G.D., E.D., S.E., E.F., C.M.F., L. Gallagher, D.H.G., M. Gill, D.E.G., J.L.H., H.H., J.H., V.H., S.M.K., L. Klei, D.H. Ledbetter, C. Lord, J.K.L., E.M., S.M.M., C.L.M., W.M.M., A.P.M., D.M.-D.-L., E.M.M., M. Murtha, G.O., A.P., J.R.P., A.D.P., M.A.P.-V., J. Piven, F.P., K. Rehnström, K. Roeder, G.R., S.J.S., S.L. Santangelo, G.D.S., S.W.S., M. State, J.S. Sutcliffe, P. Szatmari, A.M.V., V.J.V., C.A.W., T.H.W., E.M.W., A.J.W., T.W.Y., B.D. and M.J.D. PGC BPD Working Group: S.M.P., D.A., H.A., O.A.A., A.A., L.B., J.A.B., J.D. Barchas, T.B.B., N.B., M. Bauer, F.B., S.E.B., W.B., D.H.R.B., C.S.B., M. Boehnke, G.B., R. Breuer, W.E.B., W.F.B., S. Caesar, K. Chambert, S. Cichon, D.A.C., A. Corvin, W.H.C., D.W.C., R.D., F. Degenhardt, S. Djurovic, F. Dudbridge, H.J.E., B.E., A.E.F., I.N.F., M. Flickinger, T.F., J.F., C.F., L.F., E.S.G., M. Gill, K.G.-S., E.K.G., T.A.G., D.G., W.G., H.G., M.L.H., M. Hautzinger, S. Herms, M. Hipolito, P.A.H., C.M.H., S.J., E.G.J., I.J., L.J., R. Kandaswamy, J.L.K., G.K.K., D.L.K., P.K., M. Landén, N.L., M. Lathrop, J. Lawrence, W.B.L., M. Leboyer, P.H.L., J. Li, P.L., D.-Y.L., C. Liu, F.W.L., S.L., P.B.M., W.M., N.G.M., M. Mattheisen, K.M., M. Mattingsdal, K.A.M., P.M., M.G.M., A. McIntosh, R.M., A.W.M., F.J.M., A. McQuillin, S.M., I.M., F.M., G.W.M., J.L.M., G.M., D.W.M., V. Moskvina, P.M., T.W.M., W.J.M., B.M.-M., R.M.M., C.M.N., I.N., V.N., M.M.N., J.I.N., E.A.N., C.O., U.O., M.J.O., B.S.P., J.B.P., P.P., E.M.Q., S. Raychaudhuri, A. Reif, J.P.R., M. Rietschel, D. Ruderfer, M. Schalling, A.F.S., W.A.S., N.J.S., T.G.S., J. Schumacher, M. Schwarz, E.S., L.J.S., P.D.S., E.N.S., D.S.C., M. Steffens, J.S. Strauss, J. Strohmaier, S.S., R.C.T., F.T., J.T., J.B.V., S.J.W., T.F.W., S.H.W., W.X., A.H.Y., P.P.Z., P.Z., S. Zöllner, J.R.K., P. Sklar, M.J.D., M.C.O. and N.C. PGC MDD Working Group: M.R.B., T. Bettecken, E.B.B., D.H.R.B., D.I.B., G.B., R. Breuer, S. Cichon, W.H.C., I.W.C., D. Czamara, E.J.D.G., F. Degenhardt, A.E.F., J.F., S.D.G., M. Gross, S.P.H., A.C.H., A.K.H., S. Herms, I.B.H., F.H., W.J.H., S. Hoefels, J.-J.H., M.I., I.J., L.J., J.-Y. T., J.A.K., M.A.K., A.K., W.B.L., D.F.L., C.M.L., D.-Y.L., S.L., D.J.M., P.A.F.M., W.M.,. N.G.M., M. Mattheisen, P.J.M., P.M., A. McIntosh, A.W.M., C.M.M., L.M., G.W.M., P.M., B.M.-M., W.A.N., M.M.N., D.R.N., B.W.P., M.L.P., J.B.P., M. Rietschel, W.A.S., T.G.S., J. Shi, S.I.S., S.L. Slager, J.H.S., M. Steffens, F.T., J.T., M.U., E.J.C.G.v.d.O., G.V.G., M.M.W., G.W., F.G.Z., P.F.S. and N.R.W. PGC SCZ Working Group: S. Ripke, B.M.N., S.M.P., B.J.M., I.A., F.A., O.A.A., M.H.A., N.B., D.W.B., D.H.R.B., R. Bruggeman, N.G.B., W.F.B., W.C., R.M.C., K. Choudhury, S. Cichon, C.R.C., P.C., A. Corvin, D. Curtis, S. Datta, S. Djurovic, G.J.D., J.D., F. Dudbridge, A.F., R.F., N.B.F., M. Friedl, P.V.G., L. Georgieva, I.G., M. Gill, H.G., L.D.H., M.L.H., T.F.H., A.M.H., P.A.H., C.M.H., A.I., A.K.K, R.S.K., M.C.K., E.K., Y.K., G.K.K., B.K., L. Krabbendam, R. Krasucki, J. Lawrence, P.H.L., T.L., D.F.L., J.A.L., D.-Y.L., D.H. Linszen, P.K.E.M., W.M., A.K.M., M. Mattheisen, M. Mattingsdal, S.M., S.A.M., A. McIntosh, A. McQuillin, H.M., I.M., V. Milanova, D.W.M., V. Moskvina, I.M.-G., M.M.N., C.O., A.O., L.O., R.A.O., M.J.O., C.N.P., M.T.P., B.S.P., J. Pimm, D.P., V.P., D.J.Q., H.B.R., M. Rietschel, L.R., D. Ruderfer, D. Rujescu, A.R.S., T.G.S., J. Shi, J.M.S., D.S.C., T.S.S., S.T., J.V.O., P.M.V., T.W., S. Zammit, P. Sklar, M.J.D., M.C.O., N.C., P.F.S. and K.S.K. PGC Cross-Disorder Group Working Group: S.H.L., S. Ripke, B.M.N., S.M.P., R.H.P., A.T., A.F., M.C.N., J.I.N., B.W.P., M. Rietschel, T.G.S., N.C., S.L. Santangelo, P.F.S., J.W.S., K.S.K. and N.R.W. PGC Analysis Working Group: S.H.L., S. Ripke, B.M.N., S.M.P., V.A., E.M.B., P.H.L., S.E.M., M.C.N., D.P., M.J.D. and N.R.W. COMPETING FINANCIAL INTERESTS The authors declare no competing financial interests. Reprints and permissions informat

[1]  S. Faraone,et al.  Examining the comorbidity between attention deficit hyperactivity disorder and bipolar I disorder: a meta-analysis of family genetic studies. , 2012, The American journal of psychiatry.

[2]  Naomi R. Wray,et al.  Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis , 2012, Human molecular genetics.

[3]  P. Sullivan,et al.  Family history of schizophrenia and bipolar disorder as risk factors for autism. , 2012, Archives of general psychiatry.

[4]  B. Penninx,et al.  Estimating the Genetic Variance of Major Depressive Disorder Due to All Single Nucleotide Polymorphisms , 2012, Biological Psychiatry.

[5]  Kathryn Roeder,et al.  Common genetic variants, acting additively, are a major source of risk for autism , 2012, Molecular Autism.

[6]  Margaret A. Pericak-Vance,et al.  Individual common variants exert weak effects on the risk for autism spectrum disorders , 2012, Human molecular genetics.

[7]  Patrick F. Sullivan,et al.  Genetic architectures of psychiatric disorders: the emerging picture and its implications , 2012, Nature Reviews Genetics.

[8]  Jonathan P. Bickel,et al.  The Co-Morbidity Burden of Children and Young Adults with Autism Spectrum Disorders , 2012, PloS one.

[9]  P. Visscher,et al.  A Better Coefficient of Determination for Genetic Profile Analysis , 2012, Genetic epidemiology.

[10]  Stephan Ripke,et al.  Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs , 2012, Nature Genetics.

[11]  Ellen Li,et al.  A Microbial Association with Autism , 2012, mBio.

[12]  M. Gill,et al.  Investigating the Contribution of Common Genetic Variants to the Risk and Pathogenesis of ADHD , 2012, The American journal of psychiatry.

[13]  N. Wray,et al.  Impact of diagnostic misclassification on estimation of genetic correlations using genome-wide genotypes , 2012, European Journal of Human Genetics.

[14]  P. Visscher,et al.  Five years of GWAS discovery. , 2012, American journal of human genetics.

[15]  S. Cichon,et al.  Genome‐wide association study in German patients with attention deficit/hyperactivity disorder , 2011, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[16]  R. Kotov,et al.  Diagnostic shifts during the decade following first admission for psychosis. , 2011, The American journal of psychiatry.

[17]  J. Chao,et al.  Increased Risks of Developing Anxiety and Depression in Young Patients With Crohn's Disease , 2011, The American Journal of Gastroenterology.

[18]  John Wei,et al.  Rare Copy Number Variation Discovery and Cross-Disorder Comparisons Identify Risk Genes for ADHD , 2011, Science Translational Medicine.

[19]  B. Browning,et al.  Population structure can inflate SNP-based heritability estimates. , 2011, American journal of human genetics.

[20]  W. G. Hill,et al.  Genome partitioning of genetic variation for complex traits using common SNPs , 2011, Nature Genetics.

[21]  Catherine Lord,et al.  Is schizophrenia on the autism spectrum? , 2011, Brain Research.

[22]  P. Visscher,et al.  Estimating missing heritability for disease from genome-wide association studies. , 2011, American journal of human genetics.

[23]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[24]  Tariq Ahmad,et al.  Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci , 2010, Nature Genetics.

[25]  Stephan J Sanders,et al.  Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. , 2010, American journal of human genetics.

[26]  C. Gillberg,et al.  The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. , 2010, The American journal of psychiatry.

[27]  Joshua M. Korn,et al.  Accurately Assessing the Risk of Schizophrenia Conferred by Rare Copy-Number Variation Affecting Genes with Brain Function , 2010, PLoS genetics.

[28]  Susanne Walitza,et al.  Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. , 2010, Journal of the American Academy of Child and Adolescent Psychiatry.

[29]  Teri A Manolio,et al.  Genomewide association studies and assessment of the risk of disease. , 2010, The New England journal of medicine.

[30]  P. Visscher,et al.  Common SNPs explain a large proportion of the heritability for human height , 2010, Nature Genetics.

[31]  B. Franke,et al.  Identifying loci for the overlap between attention-deficit/hyperactivity disorder and autism spectrum disorder using a genome-wide QTL linkage approach. , 2010, Journal of the American Academy of Child and Adolescent Psychiatry.

[32]  B. Crespi,et al.  Comparative genomics of autism and schizophrenia , 2010, Proceedings of the National Academy of Sciences.

[33]  P. Stankiewicz,et al.  Structural variation in the human genome and its role in disease. , 2010, Annual review of medicine.

[34]  P. McGuffin,et al.  Genetic overlap between measures of hyperactivity/inattention and mood in children and adolescents. , 2009, Journal of the American Academy of Child and Adolescent Psychiatry.

[35]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[36]  M C O'Donovan,et al.  The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia , 2009, Molecular Psychiatry.

[37]  P. Mortensen,et al.  Psychiatric family history and schizophrenia risk in Denmark: which mental disorders are relevant? , 2009, Psychological Medicine.

[38]  Jared X. Van Snellenberg,et al.  Meta-analytic evidence for familial coaggregation of schizophrenia and bipolar disorder. , 2009, Archives of general psychiatry.

[39]  Esben Agerbo,et al.  Bipolar disorder, schizoaffective disorder, and schizophrenia overlap: a new comorbidity index. , 2009, The Journal of clinical psychiatry.

[40]  B. Franke,et al.  Autism symptoms in Attention-Deficit/Hyperactivity Disorder: A Familial trait which Correlates with Conduct, Oppositional Defiant, Language and Motor Disorders , 2009, Journal of autism and developmental disorders.

[41]  R. Plomin,et al.  Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. , 2008, Journal of child psychology and psychiatry, and allied disciplines.

[42]  N. Craddock,et al.  Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. , 2005, Schizophrenia bulletin.

[43]  Steven S. Sharfstein,et al.  The American Psychiatric Association , 2005, International psychiatry : bulletin of the Board of International Affairs of the Royal College of Psychiatrists.

[44]  J. Constantino,et al.  Intergenerational transmission of subthreshold autistic traits in the general population , 2005, Biological Psychiatry.

[45]  J. Smoller,et al.  Family, twin, and adoption studies of bipolar disorder , 2003, American journal of medical genetics. Part C, Seminars in medical genetics.

[46]  D. Altman,et al.  Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.

[47]  P. Sham,et al.  The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. , 2003, Archives of general psychiatry.

[48]  W. Ewens Genetics and analysis of quantitative traits , 1999 .

[49]  M. Taylor,et al.  The Genetics of Mood Disorders. , 1991, The American journal of psychiatry.

[50]  M. Tsuang,et al.  Stability of psychiatric diagnosis. Schizophrenia and affective disorders followed up over a 30- to 40-year period. , 1981, Archives of general psychiatry.

[51]  T. Reich,et al.  The use of multiple thresholds in determining the mode of transmission of semi‐continuous traits * , 1972, Annals of human genetics.

[52]  Albert,et al.  THE CHILDREN'S HOSPITAL OF PHILADELPHIA , 1955 .

[53]  W. G. Cochran The combination of estimates from different experiments. , 1954 .

[54]  Hospital for Sick Children , 1859 .

[55]  Matthew S. DiStefano,et al.  ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI , 2014 .

[56]  Erin K. Hedlund,et al.  Genome-wide association analysis identifies 13 new risk loci for schizophrenia , 2013 .

[57]  J. Stockman,et al.  Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study , 2010 .

[58]  Deanna Greenstein,et al.  Autism spectrum disorders and childhood-onset schizophrenia: clinical and biological contributions to a relation revisited. , 2009, Journal of the American Academy of Child and Adolescent Psychiatry.

[59]  X. Estivill,et al.  Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB , 2009, Molecular Psychiatry.