Interface observation of heat-treated Co/Mo2C multilayers

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  G. D. Rieck,et al.  Determination of the phase diagram of the MoCo system using diffusion couples , 1974 .

[3]  G. D. Rieck,et al.  Determination of the phase diagram of the Mo--Fe system using diffusion couples , 1974 .

[4]  A. Miedema,et al.  Cohesion in alloys — fundamentals of a semi-empirical model , 1980 .

[5]  A. Jacobson,et al.  The structures of the η-carbides Ni6Mo6C, Co6Mo6C, and Co6Mo6C2 , 1988 .

[6]  Kuiper,et al.  Perpendicular magnetic anisotropy of Co-Au multilayers induced by interface sharpening. , 1988, Physical review letters.

[7]  A. K. Niessen,et al.  The “Macroscopic Atom” Model: An Easy Tool to Predict Thermodynamic Quantities , 1989 .

[8]  N. Ceglio,et al.  Thermally induced structural modification of Mo‐Si multilayers , 1990 .

[9]  K. Ishida,et al.  The C-Co(Carbon-Cobalt) system , 1991 .

[10]  홍원식 Performance , 2005 .

[11]  Schuller,et al.  Structural refinement of superlattices from x-ray diffraction. , 1992, Physical review. B, Condensed matter.

[12]  P. Paquier,et al.  Instrument for research on interfaces and surfaces , 1994 .

[13]  C. Meny,et al.  NMR analysis of buried metallic interfaces , 1996 .

[14]  H. Bai,et al.  Interdiffusion in Co/C soft X-ray multilayer mirrors , 1996 .

[15]  C. D. Wang,et al.  Interdiffusion in CoN/CN soft X-ray multilayer mirrors , 1996 .

[16]  C. D. Wang,et al.  Enhancement of the reflectivity of soft-x-ray Co/C multilayers at grazing incidence by thermal treatment , 1996 .

[17]  C. D. Wang,et al.  Aging effect of Co/C soft X-ray multilayer mirrors , 1997 .

[18]  C. Meny,et al.  Influence of the growth technique on the coupling and magnetoresistance of Co/Ru sandwiches , 1998 .

[19]  F. Bijkerk,et al.  Temperature induced diffusion in Mo/Si multilayer mirrors , 1998 .

[20]  Gábor A. Langer,et al.  Thermal stability of amorphous and crystalline multilayers produced by magnetron sputtering , 1998 .

[21]  C. Meny,et al.  The anisotropic first-neighbour contribution to the hyperfine field in hexagonal-close-packed Co: a nuclear magnetic resonance study of diluted alloys and multilayers , 1998 .

[22]  Nuclear magnetic resonance investigations of the structure and magnetic properties of metallic multilayers and nanocomposites , 2000 .

[23]  S. Bajt,et al.  Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers , 2001 .

[24]  K. P. Gupta The Co-Mo-W system (Cobalt-Molybdenum-Tungsten) , 2002 .

[25]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[26]  H. Bai,et al.  Interdiffusion in low-temperature annealed amorphous CoMoN/CN compound soft-x-ray optical multilayer mirrors , 2003 .

[27]  Hitoshi Sato,et al.  Soft X-ray emission study of nano-structured carbon , 2004 .

[28]  P. Jonnard,et al.  Physico-chemical and X-ray optical characterizations of a Mo/Si multilayer interferential mirror upon annealing , 2005 .

[29]  E. Majková,et al.  Tailoring of multilayer interfaces by pulsed laser irradiation , 2005 .

[30]  V. R. Galakhov,et al.  Ultrasoft X-ray spectroscopy with variation of the electron excitation energy as a method for analyzing thin films and solid/solid interfaces , 2009 .

[31]  D. Windt,et al.  Performance, structure, and stability of SiC/Al multilayer films for extreme ultraviolet applications. , 2009, Applied optics.

[32]  C. C. Tripathi,et al.  Atom beam sputtered Mo2C films as a diffusion barrier for copper metallization , 2009 .

[33]  Jingtao Zhu,et al.  Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength. , 2010, Applied optics.

[34]  P. Jonnard,et al.  Development and Interfacial Characterization of Co/Mg Periodic Multilayers for the EUV Range , 2010 .

[35]  P. Jonnard,et al.  Structural properties of Al/Mo/SiC multilayers with high reflectivity for extreme ultraviolet light. , 2010, Optics express.

[36]  F. Bijkerk,et al.  Enhanced diffusion upon amorphous-to-nanocrystalline phase transition in Mo/B4C/Si layered systems , 2010 .

[37]  Study of roughness in multilayer Mo–Si mirrors , 2011 .

[38]  Introduction of Zr in nanometric periodic Mg/Co multilayers , 2011, 1111.4546.

[39]  P. Jonnard,et al.  Characterization of EUV periodic multilayers , 2011 .

[40]  A. Giglia,et al.  Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications , 2011, 1112.1292.

[41]  Jingtao Zhu,et al.  Investigation of the x-ray reflectivity of the Co/Mo2C system upon thermal treatment , 2012, Optical Systems Design.

[42]  P. Jonnard,et al.  The chemical characterization and reflectivity of the Al(1.0%wtSi)/Zr periodic multilayer , 2012 .

[43]  P. Jonnard,et al.  An etched multilayer as a dispersive element in a curved-crystal spectrometer: implementation and performance , 2012, 1208.6404.

[44]  P. Jonnard,et al.  The thermal stability of Al(1%wtSi)/Zr EUV mirrors , 2012 .

[45]  Zhanshan Wang,et al.  Improved thermal stability of Mg/Co multilayer by introducing Zr barrier layer , 2012, Other Conferences.

[46]  A. Giglia,et al.  Thermal effects on Co/Mo2C multilayer mirrors studied by soft x-ray standing wave enhanced photoemission spectroscopy , 2013, Europe Optics + Optoelectronics.

[47]  E. Meltchakov,et al.  X-ray properties and interface study of B4C/Mo and B4C/Mo2C periodic multilayers , 2013 .

[48]  B. S. Murty,et al.  Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems , 2013 .

[49]  P. Jonnard,et al.  Thermally induced structural modification in the Al/Zr multilayers , 2012, 1210.6442.

[50]  A. Giglia,et al.  Co/Mo2C multilayer as X‐ray mirror: Optical and thermal performances , 2014 .