Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni

[1]  David L. McDowell,et al.  An analysis of key characteristics of the Frank-Read source process in FCC metals , 2016 .

[2]  Youping Chen,et al.  Edge dislocations bowing out from a row of collinear obstacles in Al , 2016 .

[3]  D. McDowell,et al.  Mesh refinement schemes for the concurrent atomistic-continuum method , 2016 .

[4]  David L. McDowell,et al.  Coarse-grained elastodynamics of fast moving dislocations , 2016 .

[5]  David L. McDowell,et al.  Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study , 2016 .

[6]  Jaafar A. El-Awady,et al.  Screw dislocation cross slip at cross-slip plane jogs and screw dipole annihilation in FCC Cu and Ni investigated via atomistic simulations , 2015 .

[7]  David L. McDowell,et al.  A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals , 2015 .

[8]  William A. Curtin,et al.  Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS , 2015 .

[9]  Jaafar A. El-Awady,et al.  Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals , 2015 .

[10]  David L. McDowell,et al.  Concurrent atomistic–continuum simulations of dislocation–void interactions in fcc crystals , 2015 .

[11]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[12]  V. Bulatov,et al.  Automated identification and indexing of dislocations in crystal interfaces , 2012 .

[13]  G. Po,et al.  Ab initio continuum model for the influence of local stress on cross-slip of screw dislocations in fcc metals , 2012 .

[14]  Alankar Alankar,et al.  Explicit incorporation of cross-slip in a dislocation density-based crystal plasticity model , 2012 .

[15]  R. Gröger,et al.  Constrained nudged elastic band calculation of the Peierls barrier with atomic relaxations , 2012 .

[16]  A. Stukowski Structure identification methods for atomistic simulations of crystalline materials , 2012, 1202.5005.

[17]  G. Lu,et al.  Dislocation cross-slip mechanisms in aluminum , 2011 .

[18]  C. V. Singh,et al.  Atomistic simulations of dislocation–precipitate interactions emphasize importance of cross-slip , 2011 .

[19]  David L. McDowell,et al.  Coarse-grained atomistic simulation of dislocations , 2011 .

[20]  Jaafar A. El-Awady,et al.  Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation , 2010 .

[21]  L. Proville,et al.  Atomic-scale models for hardening in fcc solid solutions , 2010 .

[22]  G. Schoeck The cross-slip energy unresolved , 2009 .

[23]  Youping Chen,et al.  Reformulation of microscopic balance equations for multiscale materials modeling. , 2009, The Journal of chemical physics.

[24]  V. Vítek,et al.  Multiscale modeling of plastic deformation of molybdenum and tungsten: III. Effects of temperature and plastic strain rate , 2008, 0807.2772.

[25]  H. Van Swygenhoven,et al.  Dislocation cross-slip in nanocrystalline fcc metals. , 2008, Physical review letters.

[26]  H. Matsui,et al.  Void-induced cross slip of screw dislocations in fcc copper , 2007, 0710.5811.

[27]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[28]  Huajian Gao,et al.  The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation , 2005 .

[29]  W. Chu,et al.  Molecular dynamics simulation of cross-slip and the intersection of dislocations in copper , 2003 .

[30]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[31]  V. Bulatov,et al.  Dislocation constriction and cross-slip: An ab initio study , 2002, cond-mat/0202488.

[32]  Tejs Vegge,et al.  Atomistic simulations of screw dislocation cross slip in copper and nickel , 2001 .

[33]  C. Woodward,et al.  Ab-initio simulation of isolated screw dislocations in bcc Mo and Ta , 2001 .

[34]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[35]  Hannes Jónsson,et al.  Atomistic Determination of Cross-Slip Pathway and Energetics , 1997 .

[36]  Karsten Wedel Jacobsen,et al.  SIMULATIONS OF THE ATOMIC STRUCTURE, ENERGETICS, AND CROSS SLIP OF SCREW DISLOCATIONS IN COPPER , 1997 .

[37]  A. Ngan,et al.  Line tension of screw dislocations on cross-slip planes , 1996 .

[38]  A. Ngan On generalizing the Peierls-Nabarro model for screw dislocations with non-planar cores , 1995 .

[39]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[40]  D. Hull,et al.  Introduction to Dislocations , 1968 .

[41]  R. Fleischer,et al.  Cross slip of extended dislocations , 1959 .

[42]  A. Foreman Dislocation energies in anisotropic crystals , 1955 .

[43]  Jie Yin,et al.  Stress dependence of cross slip energy barrier for face-centered cubic nickel , 2014 .

[44]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[45]  Sidney Yip,et al.  Chapter 64 – Dislocation Core Effects on Mobility , 2004 .

[46]  T. Rasmussen Cross Slip in the Face Centred Cubic Structure: An Atomistic Approach , 2000 .

[47]  M. Duesbery Dislocation motion, constriction and cross-slip in fcc metals , 1998 .

[48]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .