Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering.

In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.

[1]  John H. Page,et al.  Group velocity of acoustic waves in strongly scattering media: Dependence on the volume fraction of scatterers , 1998 .

[2]  Anisotropic multiple scattering in diffusive media , 1995, cond-mat/9504058.

[3]  J. Dieudonne,et al.  Special Functions and Linear Representations of Lie Groups , 1980 .

[4]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[5]  S. M. Rytov,et al.  Principles of statistical radiophysics , 1987 .

[6]  N. Temme Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .

[7]  U. Grenander Probabilities on Algebraic Structures , 1964 .

[8]  Po-zen Wong,et al.  Methods in the physics of porous media , 1999 .

[9]  Tammo tom Dieck,et al.  Representations of Compact Lie Groups , 1985 .

[10]  L. Margerin Attenuation, transport and diffusion of scalar waves in textured random media , 2006 .

[11]  L. Papiez,et al.  Compound-Poisson-process method for the multiple scattering of charged particles. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Luděk Klimeš,et al.  Correlation Functions of Random Media , 2002 .

[13]  Rudolf Grübel,et al.  Decompounding: an estimation problem for Poisson random sums , 2003 .

[14]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[15]  Michael Fehler,et al.  Seismic Wave Propagation and Scattering in the Heterogeneous Earth , 2012 .

[16]  Salem Said,et al.  Statistsics of Stokes Parameters in a Random Birefringent Medium by Salem SAID & , 2008 .

[17]  S. Torquato Random Heterogeneous Materials , 2002 .

[18]  E D Hirleman General solution to the inverse near-forward-scattering particle-sizing problem in multiple-scattering environments: theory. , 1991, Applied optics.

[19]  S. M. Rytov,et al.  Priniciples of statistical radiophysics. 3. Elements of random fields. , 1989 .

[20]  Peter Spreij,et al.  A kernel type nonparametric density estimator for decompounding , 2005, math/0505355.

[21]  Christian Lageman,et al.  Decompounding on Compact Lie Groups , 2010, IEEE Transactions on Information Theory.

[22]  D. Rockmore,et al.  FFTs on the Rotation Group , 2008 .