Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering.
暂无分享,去创建一个
[1] John H. Page,et al. Group velocity of acoustic waves in strongly scattering media: Dependence on the volume fraction of scatterers , 1998 .
[2] Anisotropic multiple scattering in diffusive media , 1995, cond-mat/9504058.
[3] J. Dieudonne,et al. Special Functions and Linear Representations of Lie Groups , 1980 .
[4] Akira Ishimaru,et al. Wave propagation and scattering in random media , 1997 .
[5] S. M. Rytov,et al. Principles of statistical radiophysics , 1987 .
[6] N. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .
[7] U. Grenander. Probabilities on Algebraic Structures , 1964 .
[8] Po-zen Wong,et al. Methods in the physics of porous media , 1999 .
[9] Tammo tom Dieck,et al. Representations of Compact Lie Groups , 1985 .
[10] L. Margerin. Attenuation, transport and diffusion of scalar waves in textured random media , 2006 .
[11] L. Papiez,et al. Compound-Poisson-process method for the multiple scattering of charged particles. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[12] Luděk Klimeš,et al. Correlation Functions of Random Media , 2002 .
[13] Rudolf Grübel,et al. Decompounding: an estimation problem for Poisson random sums , 2003 .
[14] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[15] Michael Fehler,et al. Seismic Wave Propagation and Scattering in the Heterogeneous Earth , 2012 .
[16] Salem Said,et al. Statistsics of Stokes Parameters in a Random Birefringent Medium by Salem SAID & , 2008 .
[17] S. Torquato. Random Heterogeneous Materials , 2002 .
[18] E D Hirleman. General solution to the inverse near-forward-scattering particle-sizing problem in multiple-scattering environments: theory. , 1991, Applied optics.
[19] S. M. Rytov,et al. Priniciples of statistical radiophysics. 3. Elements of random fields. , 1989 .
[20] Peter Spreij,et al. A kernel type nonparametric density estimator for decompounding , 2005, math/0505355.
[21] Christian Lageman,et al. Decompounding on Compact Lie Groups , 2010, IEEE Transactions on Information Theory.
[22] D. Rockmore,et al. FFTs on the Rotation Group , 2008 .