Current two‐dimensional electrophoresis technology for proteomics

Two‐dimensional gel electrophoresis (2‐DE) with immobilized pH gradients (IPGs) combined with protein identification by mass spectrometry (MS) is currently the workhorse for proteomics. In spite of promising alternative or complementary technologies (e.g. multidimensional protein identification technology, stable isotope labelling, protein or antibody arrays) that have emerged recently, 2‐DE is currently the only technique that can be routinely applied for parallel quantitative expression profiling of large sets of complex protein mixtures such as whole cell lysates. 2‐DE enables the separaration of complex mixtures of proteins according to isoelectric point (pI), molecular mass (Mr), solubility, and relative abundance. Furthermore, it delivers a map of intact proteins, which reflects changes in protein expression level, isoforms or post‐translational modifications. This is in contrast to liquid chromatography‐tandem mass spectrometry based methods, which perform analysis on peptides, where Mr and pI information is lost, and where stable isotope labelling is required for quantitative analysis. Today's 2‐DE technology with IPGs (Görg et al., Electrophoresis 2000, 21, 1037–1053), has overcome the former limitations of carrier ampholyte based 2‐DE (O'Farrell, J. Biol. Chem. 1975, 250, 4007–4021) with respect to reproducibility, handling, resolution, and separation of very acidic and/or basic proteins. The development of IPGs between pH 2.5–12 has enabled the analysis of very alkaline proteins and the construction of the corresponding databases. Narrow‐overlapping IPGs provide increased resolution (δpI = 0.001) and, in combination with prefractionation methods, the detection of low abundance proteins. Depending on the gel size and pH gradient used, 2‐DE can resolve more than 5000 proteins simultaneously (˜2000 proteins routinely), and detect and quantify < 1 ng of protein per spot. In this article we describe the current 2‐DE/MS workflow including the following topics: sample preparation, protein solubilization, and prefractionation; protein separation by 2‐DE with IPGs; protein detection and quantitation; computer assisted analysis of 2‐DE patterns; protein identification and characterization by MS; two‐dimensional protein databases.

[1]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[2]  D. Rodbard,et al.  INSTABILITY OF pH GRADIENTS FORMED BY ISOELECTRIC FOCUSING IN POLYACRYLAMIDE GEL , 1973, Annals of the New York Academy of Sciences.

[3]  J. Drysdale,et al.  SMALL‐SCALE FRACTIONATION OF PROTEINS AND NUCLEIC ACIDS BY ISOELECTRIC FOCUSING IN POLYACRYLAMIDE GELS * , 1973, Annals of the New York Academy of Sciences.

[4]  K. Hannig,et al.  The use of continuous preparative free-flow electrophoresis for dissociating cell fractions and isolation of membranous components. , 1974, Methods in enzymology.

[5]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[6]  G. Scheele,et al.  Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. , 1975, The Journal of biological chemistry.

[7]  Howard M. Goodman,et al.  High resolution two-dimensional electrophoresis of basic as well as acidic proteins , 1977, Cell.

[8]  N G Anderson,et al.  Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. , 1978, Analytical biochemistry.

[9]  B. Oakley,et al.  A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. , 1980, Analytical biochemistry.

[10]  A. Görg,et al.  Gel gradient electrophoresis, isoelectric focusing and two-dimensional techniques in horizontal, ultrathin polyacrylamide layers. , 1980, Journal of biochemical and biophysical methods.

[11]  C. Merril,et al.  Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. , 1981, Science.

[12]  E Gianazza,et al.  Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. , 1982, Journal of biochemical and biophysical methods.

[13]  Y. Fujiki,et al.  Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum , 1982, The Journal of cell biology.

[14]  B. Trus,et al.  Quantitative double-label radiography of two-dimensional protein gels using color negative film and computer analysis. , 1983, European journal of biochemistry.

[15]  P. Strevens Iii , 1985 .

[16]  A. Görg,et al.  Improved resolution of PI (alpha 1-antitrypsin) phenotypes by a large-scale immobilized pH gradient. , 1985, American journal of human genetics.

[17]  F. Granier,et al.  Silver staining of proteins: standardized procedure for two-dimensional gels bound to polyester sheets. , 1986, Analytical biochemistry.

[18]  H. Schägger,et al.  Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. , 1987, Analytical biochemistry.

[19]  S. Hanash,et al.  Elimination of point streaking on silver stained two‐dimensional gels by addition of iodoacetamide to the equilibration buffer , 1987 .

[20]  C. Mackay,et al.  Rapid imaging, using a cooled charge‐coupled‐device, of fluorescent two‐dimensional polyacrylamide gels produced by labelling proteins in the first‐dimensional isoelectric focusing gel with the fluorophore 2‐methoxy‐2,4‐diphenyl‐3(2H)furanone , 1988, Electrophoresis.

[21]  B. Bjellqvist,et al.  Isoelectric focusing of basic proteins: The problem of oxidation of cysteines , 1988, Electrophoresis.

[22]  M. Bier,et al.  Isolation of monoclonal antibodies to phencyclidine from ascites fluid by preparative isoelectric focusing in the Rotofor. , 1988, Analytical biochemistry.

[23]  F. Granier Extraction of plant proteins for two‐dimensional electrophoresis , 1988, Electrophoresis.

[24]  Angelika Görg,et al.  Two‐dimensional electrophoresis. The current state of two‐dimensional electrophoresis with immobilized pH gradients , 1988 .

[25]  V. Neuhoff,et al.  Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G‐250 and R‐250 , 1988, Electrophoresis.

[26]  J. Garrels The QUEST system for quantitative analysis of two-dimensional gels. , 1989, The Journal of biological chemistry.

[27]  R. Flengsrud,et al.  A method for two-dimensional electrophoresis of proteins from green plant tissues. , 1989, Analytical biochemistry.

[28]  Pier Giorgio Righetti,et al.  Immobilized Ph Gradients: Theory and Methodology , 1990 .

[29]  P. Blackshear,et al.  Giant two‐dimensional gel electrophoresis: Methodological update and comparison with intermediate‐format gel systems , 1990, Electrophoresis.

[30]  K. Altland IPGMAKER: A program for IBM‐compatible personal computers to create and test recipes for immobilized pH gradients , 1990, Electrophoresis.

[31]  M. M. Bursey Comment to readers: Style and the lack of it , 1991 .

[32]  P. Righetti,et al.  Immobilized pH gradients (IPG) simulator ‐ an additional step in pH gradient engineering: II. Nonlinear pH gradients , 1991, Electrophoresis.

[33]  A. Freiburghaus,et al.  A universal method for two-dimensional polyacrylamide gel electrophoresis of membrane proteins using isoelectric focusing on immobilized pH gradients in the first dimension. , 1991, Analytical biochemistry.

[34]  Angelika Görg,et al.  Two-dimensional electrophoresis , 1991 .

[35]  Wayne F. Patton,et al.  Tris-tricine and Tris-borate buffer systems provide better estimates of human mesothelial cell intermediate filament protein molecular weights than the standard Tris-glycine system. , 1991, Analytical biochemistry.

[36]  R. Kuick,et al.  Temperature‐dependent spot positional variability in two‐dimensional polypeptide patterns , 1991, Electrophoresis.

[37]  A. Görg,et al.  Application of sequential extraction procedures and glycoprotein blotting for the characterization of the 2‐D polypeptide patterns of barley seed proteins , 1992, Electrophoresis.

[38]  Charles F. A. Bryce Microcomputers in biochemistry : a practical approach , 1992 .

[39]  L. Castellanos-Serra,et al.  Reverse staining of sodium dodecyl sulfate polyacrylamide gels by imidazole-zinc salts: sensitive detection of unmodified proteins. , 1992, BioTechniques.

[40]  A. Görg,et al.  Electrophoretic characterization of wheat grain allergens from different cultivars involved in bakers' asthma , 1993, Electrophoresis.

[41]  P. Jackson,et al.  Two-dimensional polyacrylamide gel electrophoresis of proteins labeled with the fluorophore monobromobimane prior to first-dimensional isoelectric focusing: imaging of the fluorescent protein spot patterns using a cooled charge-coupled device. , 1993, Analytical biochemistry.

[42]  M. Dunn Gel electrophoresis : proteins , 1993 .

[43]  D. Hochstrasser,et al.  Micropreparative two‐dimensional electrophoresis allowing the separation of samples containing milligram amounts of proteins , 1993, Electrophoresis.

[44]  S D Patterson,et al.  Evaluation of storage phosphor imaging for quantitative analysis of 2-D gels using the Quest II system. , 1993, BioTechniques.

[45]  D. Hochstrasser,et al.  A nonlinear wide‐range immobilized pH gradient for two‐dimensional electrophoresis and its definition in a relevant pH scale , 1993, Electrophoresis.

[46]  Thierry Rabilloud,et al.  Sample application by in‐gel rehydration improves the resolution of two‐dimensional electrophoresis with immobilized pH gradients in the first dimension , 1994, Electrophoresis.

[47]  M J Dunn,et al.  Positional reproducibility of protein spots in two‐dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension: An interlaboratory comparison , 1994, Electrophoresis.

[48]  P. Slonimski,et al.  Two‐Dimensional protein map of Saccharomyces cerevisiae: Construction of a gene–protein index , 1995, Yeast.

[49]  G. Daum,et al.  Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae , 1995, Yeast.

[50]  A. Görg,et al.  Two‐dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimensin (IPG‐Dalt): The state of the art and the controversy of vertical versus horizontal systems , 1995, Electrophoresis.

[51]  Anders Blomberg,et al.  Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two‐dimensional gel electrophoresis , 1995, Electrophoresis.

[52]  L. Liotta,et al.  Laser Capture Microdissection , 1996, Science.

[53]  A. Órfão,et al.  General concepts about cell sorting techniques. , 1996, Clinical biochemistry.

[54]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[55]  C. Pasquali,et al.  Preparative two‐dimensional gel electrophoresis of membrane proteins , 1997, Electrophoresis.

[56]  H. Fahimi,et al.  Isolation of rat hepatic peroxisomes by means of immune free flow electrophoresis , 1997, Electrophoresis.

[57]  A. Görg,et al.  Very alkaline immobilized pH gradients for two‐dimensional electrophoresis of ribosomal and nuclear proteins , 1997, Electrophoresis.

[58]  C. Adessi,et al.  Two‐dimensional electrophoresis of membrane proteins: A current challenge for immobilized pH gradients , 1997, Electrophoresis.

[59]  M. Ünlü,et al.  Difference gel electrophoresis. A single gel method for detecting changes in protein extracts , 1997, Electrophoresis.

[60]  D. Hochstrasser,et al.  Improved and simplified in‐gel sample application using reswelling of dry immobilized pH gradients , 1997, Electrophoresis.

[61]  George M. Church,et al.  Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K‐12 , 1997, Electrophoresis.

[62]  D. Rouquié,et al.  New zwitterionic detergents improve the analysis of membrane proteins by two‐dimensional electrophoresis , 1998, Electrophoresis.

[63]  T. Rabilloud Use of thiourea to increase the solubility of membrane proteins in two‐dimensional electrophoresis , 1998, Electrophoresis.

[64]  D. Hochstrasser,et al.  Extraction of membrane proteins by differential solubilization for separation using two‐dimensional gel electrophoresis , 1998, Electrophoresis.

[65]  D. Hochstrasser,et al.  Two‐dimensional gel electrophoresis for proteome projects: The effects of protein hydrophobicity and copy number , 1998, Electrophoresis.

[66]  W. G. Bryson,et al.  Improved protein solubility in two‐dimensional electrophoresis using tributyl phosphine as reducing agent , 1998, Electrophoresis.

[67]  S. Gygi,et al.  An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. , 1998, Analytical chemistry.

[68]  Ruedi Aebersold,et al.  High throughput protein characterization by automated reverse‐phase chromatography/electrospray tandem mass spectrometry , 1998, Protein science : a publication of the Protein Society.

[69]  N. Packer,et al.  Protein phosphorylation: technologies for the identification of phosphoamino acids. , 1998, Journal of chromatography. A.

[70]  H. Langen,et al.  Reference map of the low molecular mass proteins of Haemophilus influenzae , 1998, Electrophoresis.

[71]  A. Görg,et al.  Two‐dimensional electrophoresis of proteins in an immobilized pH 4–12 gradient , 1998, Electrophoresis.

[72]  M. Dunn,et al.  From Genome to Proteome , 1999 .

[73]  M. Fountoulakis,et al.  Enrichment of low-copy-number gene products by hydrophobic interaction chromatography. , 1999, Journal of chromatography. A.

[74]  J. Klose,et al.  Large-gel 2-D electrophoresis. , 1999, Methods in molecular biology.

[75]  R. Moritz,et al.  Proteome analysis of polyacrylamide gel‐separated proteins visualized by reversible negative staining using imidazole‐zinc salts , 1999 .

[76]  T. Rabilloud Solubilization of Proteins in 2-D Electrophoresis , 1999 .

[77]  J. Bernhardt,et al.  Dual channel imaging of two‐dimensional electropherograms in Bacillus subtilis , 1999, Electrophoresis.

[78]  J. Celis,et al.  2D protein electrophoresis: can it be perfected? , 1999, Current opinion in biotechnology.

[79]  L. Huber,et al.  Subcellular fractionation, electromigration analysis and mapping of organelles. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[80]  Autoradiography of 2-D gels. , 1999, Methods in molecular biology.

[81]  Angelika Görg,et al.  Comparison of yeast cell protein solubilization procedures for two‐dimensional electrophoresis , 1999, Electrophoresis.

[82]  A. Görg,et al.  Horizontal SDS-PAGE for IPG-Dalt. , 1999, Methods in molecular biology.

[83]  P. Selvin,et al.  A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. , 1999, Analytical biochemistry.

[84]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[85]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[86]  A. Gooley,et al.  Extraction of Escherichia coli proteins with organic solvents prior to two‐dimensional electrophoresis , 1999, Electrophoresis.

[87]  A. Görg IPG-Dalt of very alkaline proteins. , 1999, Methods in molecular biology.

[88]  Glycoprotein detection of 2-D separated proteins. , 1999, Methods in molecular biology.

[89]  A. Görg,et al.  Recent developments in two‐dimensional gel electrophoresis with immobilized pH gradients: Wide pH gradients up to pH 12, longer separation distances and simplified procedures , 1999, Electrophoresis.

[90]  M. Quadroni,et al.  Proteomics and automation , 2007, Electrophoresis.

[91]  D. Rouquié,et al.  Towards the recovery of hydrophobic proteins on two‐dimensional electrophoresis gels , 1999, Electrophoresis.

[92]  V V Demidov,et al.  PNA openers as a tool for direct quantification of specific targets in duplex DNA. , 1999, Journal of biomolecular structure & dynamics.

[93]  B Herbert,et al.  Advances in protein solubilisation for two‐dimensional electrophoresis , 1999, Electrophoresis.

[94]  Paul A. Haynes,et al.  Proteome Profiling—Pitfalls and Progress , 2000, Yeast.

[95]  M. Molloy,et al.  Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. , 2000, Analytical biochemistry.

[96]  T. Rabilloud Detecting proteins separated by 2-D gel electrophoresis. , 2000, Analytical chemistry.

[97]  D. Speicher,et al.  Quantitative evaluation of protein recoveries in two‐dimensional electrophoresis with immobilized pH gradients , 2000, Electrophoresis.

[98]  M. Molloy,et al.  Membrane proteins and proteomics: Un amour impossible? , 2000, Electrophoresis.

[99]  A. Görg,et al.  The current state of two‐dimensional electrophoresis with immobilized pH gradients , 2000, Electrophoresis.

[100]  Wayne F. Patton,et al.  A thousand points of light: The application of fluorescence detection technologies to two‐dimensional gel electrophoresis and proteomics , 2000, Electrophoresis.

[101]  N. Pfanner,et al.  Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. , 2000, Analytical biochemistry.

[102]  B. Chait,et al.  ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. , 2000, Analytical chemistry.

[103]  D. Hochstrasser,et al.  The dynamic range of protein expression: A challenge for proteomic research , 2000, Electrophoresis.

[104]  J. Garin,et al.  Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins , 2000, Electrophoresis.

[105]  S M Hanash,et al.  Biomedical applications of two‐dimensional electrophoresis using immobilized pH gradients: Current status , 2000, Electrophoresis.

[106]  A. Görg,et al.  Two-Dimensional Electrophoresis with Immobilized pH Gradients , 2000 .

[107]  T. Rabilloud,et al.  Detection of Proteins on Two-Dimensional Electrophoresis Gels , 2000 .

[108]  S. Gygi,et al.  Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[109]  P. Righetti,et al.  A turning point in proteome analysis: Sample prefractionation via multicompartment electrolyzers with isoelectric membranes , 2000, Electrophoresis.

[110]  A. Görg,et al.  Towards higher resolution: Two‐dimensional Electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients , 2000, Electrophoresis.

[111]  J Godovac-Zimmermann,et al.  Perspectives for mass spectrometry and functional proteomics. , 2001, Mass spectrometry reviews.

[112]  T. Rabilloud,et al.  A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels , 2001, Proteomics.

[113]  A. Görg,et al.  Improved silver staining protocols for high sensitivity protein identification using matrix‐assisted laser desorption/ionization‐time of flight analysis , 2001, Proteomics.

[114]  S. Ong,et al.  An evaluation of the use of two-dimensional gel electrophoresis in proteomics. , 2001, Biomolecular engineering.

[115]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[116]  D. Speicher,et al.  Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two‐dimensional gels and using one‐dimensional gels for insoluble and large proteins , 2001, Electrophoresis.

[117]  M. Fussenegger,et al.  Use of antibodies for detection of phosphorylated proteins separated by two‐dimensional gel electrophoresis , 2001, Proteomics.

[118]  R. Banks,et al.  Laser capture microdissection and proteomics: Possibilities and limitation , 2001, Proteomics.

[119]  M J Dunn,et al.  Zooming‐in on the proteome: Very narrow‐range immobilised pH gradients reveal more protein species and isoforms , 2001, Electrophoresis.

[120]  P. Roepstorff,et al.  Phospho‐proteomics: Evaluation of the use of enzymatic de‐phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresis , 2001, Proteomics.

[121]  Peter Mose Larsen,et al.  2D or not 2D , 2001 .

[122]  M. Schnölzer,et al.  A new silver staining apparatus and procedure for matrix‐assisted laser desorption/ionization‐time of flight analysis of proteins after two‐dimensional electrophoresis , 2001, Proteomics.

[123]  M. Dunn,et al.  Proteomics: From Protein Sequence to Function , 2001 .

[124]  A. Görg,et al.  Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two‐dimensional gels , 2002, Proteomics.

[125]  H. Boucherie,et al.  Differential gel exposure, a new methodology for the two‐dimensional comparison of protein samples , 2002, Proteomics.

[126]  Wayne F. Patton,et al.  Detection technologies in proteome analysis. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[127]  T. Haystead,et al.  Molecular Biologist's Guide to Proteomics , 2002, Microbiology and Molecular Biology Reviews.

[128]  T. Rabilloud Two‐dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains , 2002, Proteomics.

[129]  L. Castellanos-Serra,et al.  Inhibition of unwanted proteolysis during sample preparation: Evaluation of its efficiency in challenge experiments , 2002, Electrophoresis.

[130]  Garry L Corthals,et al.  Gradiflow as a prefractionation tool for two‐dimensional electrophoresis , 2002, Proteomics.

[131]  D. Speicher,et al.  Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two‐dimensional electrophoresis , 2002, Proteomics.

[132]  I. Olsson,et al.  Organic disulfides as a means to generate streak‐free two‐dimensional maps with narrow range basic immobilized pH gradient strips as first dimension , 2002, Proteomics.

[133]  A. Görg,et al.  Web‐based two‐dimensional database of Saccharomyces cerevisiae proteins using immobilized pH gradients from pH 6 to pH 12 and matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry , 2002, Proteomics.

[134]  Wayne F. Patton,et al.  An improved formulation of SYPRO Ruby protein gel stain: Comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation , 2002, Proteomics.

[135]  Kathryn S Lilley,et al.  Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. , 2002, Current opinion in chemical biology.

[136]  Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two‐dimensional electrophoresis , 2003, Proteomics.

[137]  Wayne F. Patton,et al.  Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology , 2003, Proteomics.

[138]  K. Williams,et al.  Carbamylation of proteins in 2-D electrophoresis--myth or reality? , 2003, Journal of Proteome Research.

[139]  Wayne F. Patton,et al.  Detection of glycoproteins in polyacrylamide gels and on electroblots using Pro‐Q Emerald 488 dye, a fluorescent periodate Schiff‐base stain , 2003, Electrophoresis.

[140]  B. Riederer,et al.  Sample preparation for two‐dimensional gel electrophoresis , 2003, Proteomics.

[141]  V. Méchin,et al.  An efficient solubilization buffer for plant proteins focused in immobilized pH gradients , 2003, Proteomics.

[142]  Guang-Zhong Yang,et al.  The role of bioinformatics in two‐dimensional gel electrophoresis , 2003, Proteomics.

[143]  Sarka Beranova-Giorgianni,et al.  Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations , 2003 .

[144]  N. Anderson,et al.  Multi‐component immunoaffinity subtraction chromatography: An innovative step towards a comprehensive survey of the human plasma proteome , 2003, Proteomics.

[145]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[146]  M. Mann,et al.  Proteomic analysis of post-translational modifications , 2003, Nature Biotechnology.

[147]  Hanno Steen,et al.  Protein Profiling with Cleavable Isotope-coded Affinity Tag (cICAT) Reagents , 2003, Molecular & Cellular Proteomics.

[148]  M. Bott,et al.  Towards a phosphoproteome map of Corynebacterium glutamicum , 2003, Proteomics.

[149]  D. Hochstrasser,et al.  Exploitation of specific properties of trifluoroethanol for extraction and separation of membrane proteins , 2003, Proteomics.

[150]  L. Huber,et al.  Organelle Proteomics Implications for Subcellular Fractionation in Proteomics , 2003 .

[151]  Robert Tonge,et al.  Evaluation of saturation labelling two‐dimensional difference gel electrophoresis fluorescent dyes , 2003, Proteomics.

[152]  A. Pandey,et al.  Tackling the phosphoproteome: tools and strategies. , 2003, Current opinion in chemical biology.

[153]  Stephen O. David,et al.  A novel experimental design for comparative two‐dimensional gel analysis: Two‐dimensional difference gel electrophoresis incorporating a pooled internal standard , 2003, Proteomics.

[154]  M. Cahill,et al.  Isoelectric focusing in long immobilized pH gradient gels to improve protein separation in proteomic analysis , 2003, Electrophoresis.

[155]  L. Arckens,et al.  Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. , 2004, Current opinion in biotechnology.

[156]  M. Fountoulakis,et al.  Application of proteomics technologies in the investigation of the brain. , 2004, Mass spectrometry reviews.

[157]  J. Klose Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues , 1975, Humangenetik.

[158]  Pier Giorgio Righetti,et al.  Blue silver: A very sensitive colloidal Coomassie G‐250 staining for proteome analysis , 2004, Electrophoresis.

[159]  Luc Negroni,et al.  Assessing factors for reliable quantitative proteomics based on two‐dimensional gel electrophoresis , 2004, Proteomics.

[160]  A. Görg,et al.  Setting up standards and a reference map for the alkaline proteome of the Gram‐positive bacterium Lactococcus lactis , 2004, Proteomics.

[161]  H. Langen,et al.  Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal‐to‐background ratio and improved baseline resolution , 2004, Proteomics.

[162]  A. van Dorsselaer,et al.  About thiol derivatization and resolution of basic proteins in two‐dimensional electrophoresis , 2004, Proteomics.

[163]  S. Ficarro,et al.  Exploring the phosphoproteome with mass spectrometry. , 2004, Mini reviews in medicinal chemistry.

[164]  K. Rose Analytical biotechnology: Qualitative and semi-quantitative protein analysis: the gold rush is still on, but the dust is settling , 2004 .