暂无分享,去创建一个
[1] Rolf Stenberg,et al. A Posteriori Estimates for Conforming Kirchhoff Plate Elements , 2018, SIAM J. Sci. Comput..
[2] A. E. H. Love,et al. The Small Free Vibrations and Deformation of a Thin Elastic Shell , 1887 .
[3] Rolf Stenberg,et al. A Family of C0 Finite Elements For Kirchhoff Plates I: Error Analysis , 2007, SIAM J. Numer. Anal..
[4] Rui Li,et al. Accurate bending analysis of rectangular thin plates with corner supports by a unified finite integral transform method , 2019, Acta Mechanica.
[5] Rolf Stenberg,et al. A family of C0 finite elements for Kirchhoff plates II: Numerical results , 2008 .
[6] Francisco-Javier Sayas,et al. Algorithm 884: A Simple Matlab Implementation of the Argyris Element , 2008, TOMS.
[7] Shawn W. Walker,et al. The Hellan-Herrmann-Johnson method with curved elements , 2019, SIAM J. Numer. Anal..
[8] Rolf Stenberg,et al. An improved a priori error analysis of Nitsche’s method for Robin boundary conditions , 2018, Numerische Mathematik.
[9] J. Z. Zhu,et al. The finite element method , 1977 .
[10] Jan Valdman,et al. MATLAB Implementation of C1 Finite Elements: Bogner-Fox-Schmit Rectangle , 2019, PPAM.
[11] J. Blaauwendraad,et al. Plates and FEM , 2010 .
[12] Konstantinos Poulios,et al. GetFEM , 2020, ACM Trans. Math. Softw..
[13] I. Hlavácek,et al. Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .
[14] Zhongci Shi,et al. Mathematical Theory of Elastic Structures , 1995 .
[15] G. Kirchhoff,et al. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .
[16] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[17] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[18] Susanne C. Brenner,et al. Isoparametric C0 interior penalty methods for plate bending problems on smooth domains , 2013 .
[19] Aulus Gellius. XVI , 2018, Aulus Gellius: Noctes Atticae.
[20] Rolf Stenberg,et al. Nitsche's method for general boundary conditions , 2009, Math. Comput..
[21] K. Friedrichs. Die Randwert-und Eigenwertprobleme aus der Theorie der elastischen Platten. (Anwendung der direkten Methoden der Variationsrechnung) , 1928 .