Nitsche's method for Kirchhoff plates

We introduce a Nitsche's method for the numerical approximation of the Kirchhoff-Love plate equation under general Robin-type boundary conditions. We analyze the method by presenting a priori and a posteriori error estimates in mesh-dependent norms. Several numerical examples are given to validate the approach and demonstrate its properties.

[1]  Rolf Stenberg,et al.  A Posteriori Estimates for Conforming Kirchhoff Plate Elements , 2018, SIAM J. Sci. Comput..

[2]  A. E. H. Love,et al.  The Small Free Vibrations and Deformation of a Thin Elastic Shell , 1887 .

[3]  Rolf Stenberg,et al.  A Family of C0 Finite Elements For Kirchhoff Plates I: Error Analysis , 2007, SIAM J. Numer. Anal..

[4]  Rui Li,et al.  Accurate bending analysis of rectangular thin plates with corner supports by a unified finite integral transform method , 2019, Acta Mechanica.

[5]  Rolf Stenberg,et al.  A family of C0 finite elements for Kirchhoff plates II: Numerical results , 2008 .

[6]  Francisco-Javier Sayas,et al.  Algorithm 884: A Simple Matlab Implementation of the Argyris Element , 2008, TOMS.

[7]  Shawn W. Walker,et al.  The Hellan-Herrmann-Johnson method with curved elements , 2019, SIAM J. Numer. Anal..

[8]  Rolf Stenberg,et al.  An improved a priori error analysis of Nitsche’s method for Robin boundary conditions , 2018, Numerische Mathematik.

[9]  J. Z. Zhu,et al.  The finite element method , 1977 .

[10]  Jan Valdman,et al.  MATLAB Implementation of C1 Finite Elements: Bogner-Fox-Schmit Rectangle , 2019, PPAM.

[11]  J. Blaauwendraad,et al.  Plates and FEM , 2010 .

[12]  Konstantinos Poulios,et al.  GetFEM , 2020, ACM Trans. Math. Softw..

[13]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[14]  Zhongci Shi,et al.  Mathematical Theory of Elastic Structures , 1995 .

[15]  G. Kirchhoff,et al.  Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[18]  Susanne C. Brenner,et al.  Isoparametric C0 interior penalty methods for plate bending problems on smooth domains , 2013 .

[19]  Aulus Gellius XVI , 2018, Aulus Gellius: Noctes Atticae.

[20]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[21]  K. Friedrichs Die Randwert-und Eigenwertprobleme aus der Theorie der elastischen Platten. (Anwendung der direkten Methoden der Variationsrechnung) , 1928 .