Constrained Mesh Methods for Functional Differential Equations

Consider the following Volterra Delay Integro Differential Equation (VDIDE): $$ y'(t) = f(t,y(t),\int\limits_{{t_0}}^t {k(t,s,y(s))ds,y(t - \tau (t)),\int\limits_{{t_0}}^{t - \sigma (t)} {k'} (t,s,y(s))ds} ) $$ (1) with initial conditions: $$ \begin{gathered} y({t_0}) = {y_0} \hfill \\ and\quad y(t): = g(t)\quad for\,\;t < {t_0} \hfill \\ \end{gathered} $$ where y: [to,b]→ℝn, f∈[to,b]×ℝ4n→ℝn and both K,K′ map: {(t,s): to≦s≦t≦b} × ℝn→ℝn. Moreover assume the delays τ and σ are continuous and strictly positive. For K=K′=0 (1) reduces to a Delay Differential Equation (DDE), and for τ=σ=0 to a Volterra Integro Differential Equation (VIDE).

[1]  M. Zennaro Natural continuous extensions of Runge-Kutta methods , 1986 .

[2]  J. M. Watt,et al.  Modern numerical methods for ordinary differential equations , 1978 .

[3]  C. Lubich Runge-Kutta theory for Volterra integrodifferential equations , 1982 .

[4]  Herbert Arndt Numerical solution of retarded initial value problems: Local and global error and stepsize control , 1984 .

[5]  Improved Absolute Stability of Predictor-Corrector Methods for Retarded Differential Equations , 1983 .

[6]  U. Ascher,et al.  Reformulation of Boundary Value Problems into “Standard” Form , 1981 .

[7]  Hermann Brunner,et al.  Implicit Runge-Kutta Methods of Optimal Order for Volterra Integro-Differential Equations , 1984 .

[8]  Kenneth W. Neves Automatic Integration of Functional Differential Equations: An Approach , 1975, TOMS.

[9]  Pavel Chocholaty,et al.  A numerical method to boundary value problems for second order delay differential equations , 1979 .

[10]  Colin W. Cryer,et al.  Highly Stable Multistep Methods for Retarded Differential Equations , 1974 .

[11]  Jesper Oppelstrup,et al.  The RKFHB4 method for delay — Differential equations , 1978 .

[12]  N. N. Krasovskii,et al.  The approximation of a problem of analytic design of controls in a system with time-lag , 1964 .

[13]  Karl Kunisch,et al.  Approximation of the State of Infinite Delay and Volterra-Type Equations , 1983 .

[14]  H. J. Pesch,et al.  Numerical treatment of delay differential equations by Hermite Interpolation , 1981 .

[15]  A Runge-Kutta-Nystrom Method for Delay Differential Equations , 1985 .

[16]  C. Travis,et al.  Approximation methods for boundary value problems of differential equations with functional arguments , 1974 .

[17]  Marino Zennaro,et al.  P-stability properties of Runge-Kutta methods for delay differential equations , 1986 .

[18]  W. Walter Differential and Integral Inequalities , 1970 .

[19]  S. McKee,et al.  Fixed step discretisation methods for delay differential equations , 1981 .

[20]  Hans J. Stetter Numerische Lösung von Differentialgleichungen mit nacheilendem Argument , 1965 .

[21]  Colin W. Cryer,et al.  NUMERICAL METHODS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS , 1972 .

[22]  A. Bellen Cohen's iteration process for boundary value problems for functional differential equations , 1979 .

[23]  Marino Zennaro On the P-Stability of One-Step Collocation for Delay Differential Equations , 1985 .

[24]  J. Hale Theory of Functional Differential Equations , 1977 .

[25]  A. Makroglou Convergence of a block-by-block method for nonlinear Volterra integro-differential equations , 1980 .

[26]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[27]  Zdzislaw Jackiewicz,et al.  Asymptotic stability analysis of θ-methods for functional differential equations , 1984 .

[28]  H. Banks,et al.  Spline approximations for functional differential equations , 1979 .

[29]  The Influence of Interpolation on the Global Error in Retarded Differential Equations , 1983 .

[30]  Franz Kappel,et al.  Infinite-Dimensional Systems , 1984 .

[31]  Boundary-value problems for differential difference equations , 1980 .

[32]  Richard Bellman,et al.  ON THE COMPUTATIONAL SOLUTION OF A CLASS OF FUNCTIONAL DIFFERENTIAL EQUATIONS , 1965 .

[33]  R. Vermiglio A one-step subregion method for delay differential equations , 1985 .

[34]  A. Hatley Mathematics in Science and Engineering , Volume 6: Differential- Difference Equations. Richard Bellman and Kenneth L. Cooke. Academic Press, New York and London. 462 pp. 114s. 6d. , 1963, The Journal of the Royal Aeronautical Society.

[35]  A. N. Al-Mutib Stability properties of numerical methods for solving delay differential equations , 1984 .

[36]  Alfredo Bellen,et al.  One-step collocation for delay differential equations , 1984 .

[37]  J. Matthys,et al.  A-Stable linear multistep methods for Volterra Integro-Differential Equations , 1976 .

[38]  Klaus Schmitt,et al.  Delay and functional differential equations and their applications : [proceedings] , 1972 .

[39]  MAXIMUM PRINCIPLES FOR PERIODIC SOLUTIONS OF LINEAR DELAY DIFFERENTIAL EQUATIONS , 1983 .

[40]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[41]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics , 1977 .

[42]  L. Tavernini Linear multistep methods for the numerical solution of volterra functional differential equations , 1973 .

[43]  H. Banks,et al.  Parameter Estimation and Identification for Systems with Delays , 1981 .

[44]  Christopher T. H. Baker,et al.  Regions of stability in the Numerical treatment of Volterra integro-differential equations , 1979 .

[45]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[46]  Richard Bellman,et al.  On the computational solution of differential-difference equations , 1961 .

[47]  L. E. El'sgolt's Introduction to the Theory of Differential Equations with Deviating Arguments , 1966 .

[48]  H. Banks,et al.  Hereditary Control Problems: Numerical Methods Based on Averaging Approximations , 1978 .

[49]  Marino Zennaro,et al.  Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method , 1985 .

[50]  Maximum principles for linear difference-differential operators in periodic function spaces , 1984 .