On the equations of the moving curve ideal

Given a parametrization of a plane algebraic curve C, some explicit adjoint linear systems on C are described in terms of determinants. Moreover, some generators of the Rees algebra associated to this parametrization are presented. The main ingredient developed in this paper is a detailed study of the elimination ideal of two homogeneous polynomials in two homogeneous variables that form a regular sequence.

[1]  Bernard Mourrain,et al.  Explicit factors of some iterated resultants and discriminants , 2006, Math. Comput..

[2]  W. Vasconcelos,et al.  On the grade of some ideals , 1981 .

[3]  Thomas W. Sederberg,et al.  On the minors of the implicitization Bézout matrix for a rational plane curve , 2001, Comput. Aided Geom. Des..

[4]  S. Abhyankar Algebraic geometry for scientists and engineers , 1990 .

[5]  J. William Hoffman,et al.  Syzygies and the Rees algebra , 2008 .

[6]  A.R.P. van den Essen,et al.  The D-resultant, singularities and the degree of unfaithfulness , 1997 .

[7]  Jooyoun Hong,et al.  On the homology of two-dimensional elimination , 2007, J. Symb. Comput..

[8]  Laurent Busé,et al.  Inversion of parameterized hypersurfaces by means of subresultants , 2004, ISSAC '04.

[9]  J. Jouanolou Formes d'inertie et résultant: un formulaire , 1997 .

[10]  Jean-Pierre Jouanolou,et al.  Résultant anisotrope, comple'ments et applications , 1996, Electron. J. Comb..

[11]  Eduardo Casas-Alvero,et al.  Singularities of plane curves , 2000 .

[12]  Ron Goldman,et al.  Axial moving lines and singularities of rational planar curves , 2007, Comput. Aided Geom. Des..

[13]  Jie-Tai Yu,et al.  D-resultant for rational functions , 2002 .

[14]  Hoon Hong Subresultants Under Composition , 1997, J. Symb. Comput..

[15]  YU JIE-TAI,et al.  THE D -RESULTANT, SINGULARITIES AND THE DEGREE OF UNFAITHFULNESS , 1997 .

[16]  David A. Cox The moving curve ideal and the Rees algebra , 2008, Theor. Comput. Sci..

[17]  Laurent Busé,et al.  ON THE CLOSED IMAGE OF A RATIONAL MAP AND THE IMPLICITIZATION PROBLEM , 2002, math/0210096.

[18]  Jean-Pierre Jouanolou An explicit duality for quasi-homogeneous ideals , 2009, J. Symb. Comput..

[19]  M. E. Kahoui D-resultant and subresultants , 2005 .

[20]  W. Vasconcelos Arithmetic of Blowup Algebras , 1994 .