暂无分享,去创建一个
[1] Bernard Mourrain,et al. Explicit factors of some iterated resultants and discriminants , 2006, Math. Comput..
[2] W. Vasconcelos,et al. On the grade of some ideals , 1981 .
[3] Thomas W. Sederberg,et al. On the minors of the implicitization Bézout matrix for a rational plane curve , 2001, Comput. Aided Geom. Des..
[4] S. Abhyankar. Algebraic geometry for scientists and engineers , 1990 .
[5] J. William Hoffman,et al. Syzygies and the Rees algebra , 2008 .
[6] A.R.P. van den Essen,et al. The D-resultant, singularities and the degree of unfaithfulness , 1997 .
[7] Jooyoun Hong,et al. On the homology of two-dimensional elimination , 2007, J. Symb. Comput..
[8] Laurent Busé,et al. Inversion of parameterized hypersurfaces by means of subresultants , 2004, ISSAC '04.
[9] J. Jouanolou. Formes d'inertie et résultant: un formulaire , 1997 .
[10] Jean-Pierre Jouanolou,et al. Résultant anisotrope, comple'ments et applications , 1996, Electron. J. Comb..
[11] Eduardo Casas-Alvero,et al. Singularities of plane curves , 2000 .
[12] Ron Goldman,et al. Axial moving lines and singularities of rational planar curves , 2007, Comput. Aided Geom. Des..
[13] Jie-Tai Yu,et al. D-resultant for rational functions , 2002 .
[14] Hoon Hong. Subresultants Under Composition , 1997, J. Symb. Comput..
[15] YU JIE-TAI,et al. THE D -RESULTANT, SINGULARITIES AND THE DEGREE OF UNFAITHFULNESS , 1997 .
[16] David A. Cox. The moving curve ideal and the Rees algebra , 2008, Theor. Comput. Sci..
[17] Laurent Busé,et al. ON THE CLOSED IMAGE OF A RATIONAL MAP AND THE IMPLICITIZATION PROBLEM , 2002, math/0210096.
[18] Jean-Pierre Jouanolou. An explicit duality for quasi-homogeneous ideals , 2009, J. Symb. Comput..
[19] M. E. Kahoui. D-resultant and subresultants , 2005 .
[20] W. Vasconcelos. Arithmetic of Blowup Algebras , 1994 .