Using fractional-order integrator to control chaos in single-input chaotic systems

This paper deals with a fractional calculus based control strategy for chaos suppression in the 3D chaotic systems. It is assumed that the structure of the controlled chaotic system has only one control input. In the proposed strategy, the controller has three tuneable parameters and the control input is constructed as fractional-order integration of a linear combination of linearized model states. The tuning procedure is based on the stability theorems in the incommensurate fractional-order systems. To evaluate the performance of the proposed controller, the design method is applied to suppress chaotic oscillations in a 3D chaotic oscillator and in the Chen chaotic system.

[1]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Mohammad Saleh Tavazoei,et al.  Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations , 2008, IEEE Transactions on Industrial Electronics.

[3]  A. J. Calderón,et al.  The fractional order lead compensator , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[4]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[5]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. I. Methods , 2003 .

[8]  A. Oustaloup,et al.  Fractional Differentiation in Passive Vibration Control , 2002 .

[9]  Thomas Kailath,et al.  Linear Systems , 1980 .

[10]  Milad Siami,et al.  More Details on Analysis of Fractional-order Van der Pol Oscillator , 2009 .

[11]  Michael Peter Kennedy,et al.  Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices , 2001 .

[12]  J. Terpak,et al.  Comparison of the methods for discrete approximation of the fractional-order operator , 2003 .

[13]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[14]  S. Manabe A Suggestion of Fractional-Order Controller for Flexible Spacecraft Attitude Control , 2002 .

[15]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[16]  P. Lino,et al.  New tuning rules for fractional PIα controllers , 2007 .

[17]  Mohammad Saleh Tavazoei,et al.  Fractional controller to stabilize fixed points of uncertain chaotic systems: Theoretical and experimental study , 2008 .

[18]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[19]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[20]  L. Ahlfors Complex Analysis , 1979 .

[21]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[22]  Yangquan Chen,et al.  Using Fractional Calculus for Lateral and Longitudinal Conrol of Autonomous Vehicles , 2003, EUROCAST.

[23]  António M. Lopes,et al.  Fractional Order Control of a Hexapod Robot , 2004 .

[24]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[25]  Xinghuo Yu,et al.  Chaos control : theory and applications , 2003 .

[26]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[27]  Mohammad Saleh Tavazoei,et al.  Chaos control via a simple fractional-order controller , 2008 .

[28]  Henrikus J. C. Huijberts,et al.  Linear Controllers for the Stabilization of Unknown Steady States of Chaotic Systems , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Vicente Feliu-Batlle,et al.  Fractional robust control of main irrigation canals with variable dynamic parameters , 2007 .

[30]  M. Lazarevic Finite time stability analysis of PDα fractional control of robotic time-delay systems , 2006 .

[31]  Alain Oustaloup,et al.  Robust Speed Control of a Low Damped Electromechanical System Based on CRONE Control: Application to a Four Mass Experimental Test Bench , 2004 .

[32]  Vicente Feliú Batlle,et al.  Fractional order control strategies for power electronic buck converters , 2006, Signal Process..