Ossification Pattern in Forelimbs of the Siamese Crocodile (Crocodylus siamensis): Similarity in Ontogeny of Carpus Among Crocodylian Species

Crocodylians have highly derived elongated carpus, which is related to their use of forelimbs in many types of gaits as well as in burrowing. The objective of present study was to describe the ossification of the forelimb in five stages of Siamese crocodile (Crocodylus siamensis). The ossification begins approximately at stage 20 in arm and forearm bones moving sequentially to the metacarpal elements. The first carpal elements with ossification centers are radiale + intermedium and ulnare (stage 22–23), and their ossification mode is typical of long bones. Between stages 22 and 24 distal carpals 3, 4, and 5 fuse together to a single formation. In the stage 25, the ossification proceeds to the pisiform, which starts ossifying late during the embryogenesis. The phalangeal formula of the digits is 2,3,4,5,3. Although there are some interspecific differences, it appears that all crocodylians have similarly uniform skeletal pattern, the process of ossification, number of carpal elements and phalangeal formulas probably due to their similar lifestyles. Anat Rec, 301:1159–1168, 2018. © 2018 Wiley Periodicals, Inc.

[1]  K. Angielczyk,et al.  The earliest bird-line archosaurs and the assembly of the dinosaur body plan , 2017, Nature.

[2]  Marc E. H. Jones,et al.  Sesamoid bones in tuatara (Sphenodon punctatus) investigated with X‐ray microtomography, and implications for sesamoid evolution in Lepidosauria , 2016, Journal of morphology.

[3]  A. Sebben,et al.  Ontogeny of the Appendicular Skeleton in Melanosuchus niger (Crocodylia: Alligatoridae) , 2016, Zoological Science.

[4]  P. Trainor,et al.  Hand/foot splitting and the ‘re-evolution’ of mesopodial skeletal elements during the evolution and radiation of chameleons , 2015, BMC Evolutionary Biology.

[5]  Roger Stevens,et al.  Gray's Anatomy for Students. , 2015 .

[6]  G. Grigg,et al.  Biology and Evolution of Crocodylians , 2015 .

[7]  E. Wilberg A New Metriorhynchoid (Crocodylomorpha, Thalattosuchia) from the Middle Jurassic of Oregon and the Evolutionary Timing of Marine Adaptations in Thalattosuchian Crocodylomorphs , 2015 .

[8]  R. Dudley,et al.  An integrative approach to understanding bird origins , 2014, Science.

[9]  J. Losos Tuatara: biology and conservation of a venerable survivor , 2014 .

[10]  Miguel Salinas-Saavedra,et al.  New Developmental Evidence Clarifies the Evolution of Wrist Bones in the Dinosaur–Bird Transition , 2014, PLoS biology.

[11]  V. Abdala,et al.  Anatomical analysis of the lizard carpal bones in the terms of skilled manual abilities , 2014 .

[12]  James M. Clark,et al.  A new fossil from the Jurassic of Patagonia reveals the early basicranial evolution and the origins of Crocodyliformes , 2013, Biological reviews of the Cambridge Philosophical Society.

[13]  Panagiotis,et al.  Polydactyly in the Tyrrhenian wall lizard (Podarcis tiliguerta) , 2013 .

[14]  S. Mackem,et al.  Tracing the Evolution of Avian Wing Digits , 2013, Current Biology.

[15]  R. Irmis,et al.  Early Crocodylomorpha , 2013 .

[16]  R. Irmis,et al.  Anatomy, phylogeny and palaeobiology of early archosaurs and their kin , 2013 .

[17]  A. L. Santos,et al.  Skeletal Anatomy of the Pectoral Girdle, Stylopodium and Zeugopodium of Caiman latirostris (Daudin, 1802) (Crocodylia: Alligatoridae) , 2012 .

[18]  F. Delsuc,et al.  Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria) , 2012, BMC Biology.

[19]  Jamie R. Oaks A TIME‐CALIBRATED SPECIES TREE OF CROCODYLIA REVEALS A RECENT RADIATION OF THE TRUE CROCODILES , 2011, Evolution; international journal of organic evolution.

[20]  E. Vorobyeva The Problem of Polydactyly in Amphibians , 2011 .

[21]  G. A. Lada Polydactyly in Anurans in the Tambov Region (Russia) , 2011 .

[22]  Yan Peng,et al.  Crocodilian phylogeny inferred from twelve mitochondrial protein-coding genes, with new complete mitochondrial genomic sequences for Crocodylus acutus and Crocodylus novaeguineae. , 2011, Molecular phylogenetics and evolution.

[23]  J. Strychalski,et al.  Polydactyly in Arctic foxes (Vulpes lagopus) , 2011, Turkish Journal of Veterinary & Animal Sciences.

[24]  W. Joyce,et al.  Transitional fossils and the origin of turtles , 2010, Biology Letters.

[25]  R. Elsey,et al.  Pentadactyl ground state of the manus of Alligator mississippiensis and insights into the evolution of digital reduction in Archosauria. , 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[26]  M. P. Ramírez-Pinilla,et al.  Limb development in the gekkonid lizard gonatodes albogularis: A reconsideration of homology in the lizard carpus and tarsus , 2010, Journal of morphology.

[27]  Nicola Jones,et al.  Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis , 2010, Journal of anatomy.

[28]  M. Ruta,et al.  The evolution of Metriorhynchoidea (mesoeucrocodylia, thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics , 2010 .

[29]  V. Abdala,et al.  Developmental basis of limb homology in Pleurodiran turtles, and the identity of the hooked element in the chelonian tarsus , 2009 .

[30]  M. Kundrát Primary chondrification foci in the wing basipodium of Struthio camelus with comments on interpretation of autopodial elements in Crocodilia and Aves. , 2009, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[31]  T. Hrbek,et al.  Phylogenetic relationships of South American alligatorids and the caiman of Madeira River. , 2008, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[32]  C. Sheil,et al.  Formation and Ossification of Limb Elements in Trachemys scripta and a Discussion of Autopodial Elements in Turtles , 2008, Zoological science.

[33]  V. Abdala,et al.  Developmental Basis of Limb Homology in Lizards , 2007, Anatomical record.

[34]  C. Lovejoy,et al.  Growth plate formation and development in alligator and mouse metapodials: evolutionary and functional implications. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[35]  N. Chapman Polydactyly in roe deer (Capreolus capreolus) , 2006, European Journal of Wildlife Research.

[36]  John R. Hutchinson,et al.  The evolution of locomotion in archosaurs , 2006 .

[37]  E. Greenbaum,et al.  Reconsideration of skeletal development of Chelydra serpentina (Reptilia: Testudinata: Chelydridae): evidence for intraspecific variation , 2005 .

[38]  C. Sheil Skeletal development of Macrochelys temminckii (Reptilia: Testudines: Chelydridae) , 2005, Journal of morphology.

[39]  C. T. Farley,et al.  Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements? , 2004, Journal of Experimental Biology.

[40]  J. Willey,et al.  The tale of the tail: limb function and locomotor mechanics in Alligator mississippiensis , 2004, Journal of Experimental Biology.

[41]  E. Tibbetts,et al.  Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. , 2003, Molecular phylogenetics and evolution.

[42]  Mason B. Meers Crocodylian forelimb musculature and its relevance to Archosauria. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[43]  C. Sheil Osteology and skeletal development of Apalone spinifera (Reptilia: Testudines: Trionychidae) , 2003, Journal of morphology.

[44]  M. Shapiro Developmental morphology of limb reduction in hemiergis (squamata: scincidae): chondrogenesis, osteogenesis, and heterochrony , 2002, Journal of morphology.

[45]  G. Wagner,et al.  Pentadactyl ground state of the avian wing. , 2002, The Journal of experimental zoology.

[46]  M. Kundrát,et al.  Pentadactyl pattern of the avian wing autopodium and pyramid reduction hypothesis. , 2002, The Journal of experimental zoology.

[47]  S. Renous,et al.  Asymmetrical gaits of juvenile Crocodylus johnstoni, galloping Australian crocodiles , 2002 .

[48]  F. Galis,et al.  Why five fingers? Evolutionary constraints on digit numbers , 2001 .

[49]  H. Larsson,et al.  The Giant Crocodyliform Sarcosuchus from the Cretaceous of Africa , 2001, Science.

[50]  M W Westneat,et al.  Comparative kinematics of the forelimb during swimming in red-eared slider (Trachemys scripta) and spiny softshell (Apalone spinifera) turtles. , 2001, The Journal of experimental biology.

[51]  J. Gersenowies,et al.  POLYDACTYLY AND OTHER FEATURES OF THE MANUS OF THE VAQUITA, PHOCOENA SINUS , 2000 .

[52]  A. Meyer,et al.  Complete mitochondrial genome suggests diapsid affinities of turtles. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Reilly,et al.  Locomotion in alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm , 1998, The Journal of experimental biology.

[54]  Á. Buscalioni,et al.  Loss of carpal elements in crocodilian limb evolution: morphogenetic model corroborated by palaeobiological data , 1997 .

[55]  David Sedmera,et al.  On the development of Cetacean extremities: II. Morphogenesis and histogenesis of the flippers in the spotted dolphin (Stenella attenuata). , 1997, European journal of morphology.

[56]  J. W. Lang,et al.  Temperature‐dependent sex determination in crocodilians , 1994 .

[57]  O. Rieppel Studies of skeleton formation in reptiles. Patterns of ossification in the skeleton of Lacerta agilis exigua Eichwald (Reptilia, Squamata) , 1994 .

[58]  K. Kardong,et al.  Vertebrates: Comparative Anatomy, Function, Evolution , 1994 .

[59]  O. Rieppel Studies on skeleton formation in reptiles. v. Patterns of ossification in the skeleton of Alligator mississippiensis DAUDIN (Reptilia, Crocodylia) , 1993 .

[60]  O. Rieppel Die Gliedmaßen der Tetrapoden — ein aktuelles Problem der Evolutionsforschung , 1993, Naturwissenschaften.

[61]  Rick J Vazquez,et al.  Functional osteology of the avian wrist and the evolution of flapping flight , 1992, Journal of morphology.

[62]  S. Gatesy Hind limb movements of the American alligator (Alligator mississippiensis) and postural grades , 1991 .

[63]  P. Alberch,et al.  Ontogeny of the limb skeleton in Alligator mississippiensis: Developmental invariance and change in the evolution of archosaur limbs , 1990, Journal of morphology.

[64]  J. Parrish The origin of crocodilian locomotion , 1987, Paleobiology.

[65]  P. Alberch,et al.  The development and homology of the chelonian carpus and tarsus , 1985, Journal of morphology.

[66]  S. Pugsley Congenital malformations in a common marmoset (Callithrix jacchus) similar to human 13-trisomy syndrome , 1985, Laboratory Animals. Journal of the Laboratory Animal Science Association.

[67]  G. Zug Crocodilian Galloping: An Unique Gait for Reptiles , 1974 .

[68]  H. Cott Scientific results of an inquiry into the ecology and economic status of the Nile Crocodile (Crocodilus niloticus) in Uganda and Northern Rhodesia , 1962 .

[69]  A. Romer Osteology of the Reptiles , 1957 .

[70]  G. Gunter Origin of the Tetrapod Limb. , 1956, Science.

[71]  H. B. Chase Inheritance of Polydactyly in the Mouse. , 1951, Genetics.

[72]  L. W. Giles Polydactylism in an Alligator , 1948 .

[73]  D. W. Bishop POLYDACTYLY IN THE TIGER SALAMANDER , 1947 .

[74]  Nils Holmgren ON THE ORIGIN OF THE TETRAPOD LIMB , 1933 .

[75]  A. Kwet,et al.  Polydactyly and polymely in two populations of Rana temporaria and Pelophylax esculentus (Anura, Ranidae) in southern Germany , 2010 .

[76]  A. Bauer,et al.  Polydactyly in the Central Pacific Gecko, Lepidodactylus sp. (Squamata: Gekkonidae) , 2009 .

[77]  M. Auer,et al.  Phalangeal formulae and ontogenetic variation of carpal morphology in Testudo horsfieldii and T. hermanni , 2008 .

[78]  S. Salisbury,et al.  Anatomical correlates associated with the bracing system of extant crocodilians: addressing the locomotor inadequacies of the Indian gharial , 2004 .

[79]  J. Hinchliffe Developmental basis of limb evolution. , 2002, The International journal of developmental biology.

[80]  E. Frey,et al.  A biomechanical transformation model for the evolution of semi-spheroidal articulations between adjoining vertebral bodies in crocodilians , 2001 .

[81]  F. Abdala,et al.  Patterns of ossification in the skeleton of Liolaemus quilmes (Iguania: Tropiduridae) , 1997 .

[82]  Robert L. Carroll,et al.  Vertebrate Paleontology and Evolution , 1988 .

[83]  M. Ferguson Reproductive biology and embryology of the crocodilians. IN: Gans, Billett and Maderson, Biology ofthe Reptilia , 1985 .

[84]  T. Potthoff Clearing and staining techniques , 1984 .

[85]  P. Ouboter The ecology of the island-lizard Podarcis sicula salfii , 1981 .

[86]  P. Dunaway Perfect polydactylism in hind feet of a gray squirrel , 1969 .

[87]  B. Brown,et al.  The ancestral crocodilian Protosuchus. Bulletin of the AMNH ; v. 97, article 3 , 1951 .

[88]  R. Haines A revision of the movements of the forearm in tetrapods. , 1946, Journal of anatomy.

[89]  Haines Rw A revision of the movements of the forearm in tetrapods. , 1946 .