Embedment Effects on Vertical Bearing Capacity of Offshore Bucket Foundations on Cohesionless Soil

AbstractThis paper presents the results from a series of physical modeling and three-dimensional finite-element (FE) analyses in which the authors examined the uniaxial vertical capacity of suction caissons for offshore wind turbines. The experiments were carried out in quartz sand and involved monotonic application of vertical load. It was found that the drained capacity of suction caissons is dependent on embedment ratio. In contrast, predictions from conventional semiempirical depth factors were found to somewhat underestimate when applied to rough foundations. On the basis of the tests and FE analyses, new expressions for the depth factor of shallow foundations were validated for embedment ratios (aspect ratios) up to unity, calibrating the fitting parameters by using data from a range of soil profiles.

[1]  Tove Feld Suction Buckets: a new innovation foundation concept, applied to offshore wind turbines , 2001 .

[2]  Kim André Larsen,et al.  Modified vertical bearing capacity for circular foundations in sand using reduced friction angle , 2012 .

[3]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[4]  T. I. Tjelta Geotechnical Experience from the Installation of the Europipe Jacket with Bucket Foundations , 1995 .

[5]  Mark Cassidy,et al.  Experimental observations of the combined loading behaviour of circular footings on loose silica sand , 2007 .

[6]  Byron W. Byrne,et al.  Design procedures for installation of suction caissons in sand , 2005 .

[7]  Guy T. Houlsby,et al.  Moment loading of caissons installed in saturated sand , 2005 .

[8]  Kazuo Tani,et al.  BEARING CAPACITY OF CIRCULAR FOUNDATIONS ON SOFT CLAY OF STRENGTH INCREASING WITH DEPTH , 1995 .

[9]  Carsten Steen Sørensen,et al.  Code of practice for foundation engineering , 2000 .

[10]  Alec Westley Skempton,et al.  The bearing capacity of clays , 1951 .

[11]  Geländebruch Hydraulischer Grundbruch Empfehlungen des Arbeitsausschusses „Ufereinfassungen“ Häfen und Wasserstraßen EAU 2012 , 2013, WASSERWIRTSCHAFT.

[12]  EH Davis,et al.  The Effect of Increasing Strength with Depth on the Bearing Capacity of Clays , 1973 .

[13]  Lars Bo Ibsen,et al.  Undrained response of bucket foundations to moment loading , 2012 .

[14]  Radu Popescu,et al.  Centrifuge validation of a numerical model for dynamic soil liquefaction , 1993 .

[15]  Guido Gottardi,et al.  Plastic response of circular footings on sand under general planar loading , 1999 .

[16]  S. Gourvenec Effect of embedment on the undrained capacity of shallow foundations under general loading , 2008 .

[17]  Amin Barari,et al.  Determination of the ultimate limit states of shallow foundations using gene expression programming (GEP) approach , 2015 .

[18]  Lars Bo Ibsen,et al.  Bucket Foundation, a status , 2005 .

[19]  Guido Gottardi,et al.  ON THE BEARING CAPACITY OF SURFACE FOOTINGS ON SAND UNDER GENERAL PLANAR LOADS , 1993 .

[20]  W. Guo,et al.  Thrust and bending moment of rigid piles subjected to moving soil , 2010 .

[21]  R. Nova,et al.  Settlements of shallow foundations on sand , 1991 .

[22]  G. Gudehus,et al.  SETTLEMENTS OF SHALLOW FOUNDATIONS OF SAND , 1985 .

[23]  Kim André Larsen,et al.  Calibration of Failure Criteria for Bucket Foundations on Drained Sand under General Loading , 2014 .

[24]  Amin Barari,et al.  Vertical Capacity of Bucket Foundations in Undrained Soil , 2014 .

[25]  J. Brinch Hansen AKADEMIET FOR DE TEKNISKE VIDENSKABER , 2008 .

[26]  Byron W. Byrne,et al.  Response of stiff piles in sand to long-term cyclic lateral loading , 2010 .

[27]  Malcolm D. Bolton,et al.  Vertical bearing capacity factors for circular and strip footings on Mohr–Coulomb soil , 1993 .

[28]  Guido Gottardi,et al.  THE DISPLACEMENT OF A MODEL RIGID SURFACE FOOTING ON DENSE SAND UNDER GENERAL PLANAR LOADING , 1995 .

[29]  L. Prandtl,et al.  Über die Härte plastischer Körper , 1920 .

[30]  Charles I. Mansur,et al.  Pile Tests, Low-Sill Structure, Old River, Louisiana , 1958 .

[31]  Guy T. Houlsby,et al.  Calculation of Stresses on Shallow Penetrometers and Footings , 1984 .

[32]  J.-G. Sieffert,et al.  COMPARISON OF EUROPEAN BEARING CAPACITY CALCULATION METHODS FOR SHALLOW FOUNDATIONS , 2000 .

[33]  Kim André Larsen,et al.  Modified Expression for the Failure Criterion of Bucket Foundations Subjected to Combined Loading , 2013 .

[34]  Chris Martin Physical and numerical modelling of offshore foundations under combined loads , 1994 .

[35]  Guy T. Houlsby,et al.  Observations of footing behaviour on loose carbonate sands , 2001 .

[36]  Lars Bo Ibsen Keynote: NGM 2008: Implementation of a new foundations concept for Offshore Wind farms , 2008 .

[37]  Mark Randolph,et al.  Suction anchors for deepwater applications , 2005 .

[38]  Amin Barari Characteristic Behavior of Bucket Foundations , 2012 .

[39]  Guido Gottardi,et al.  A complete three-dimensional failure envelope for shallow footings on sand , 1994 .

[40]  Lars Bo Ibsen,et al.  Adaptive plasticity model for bucket foundations , 2014 .

[41]  Byron W. Byrne,et al.  Suction caissons for wind turbines , 2005 .

[42]  Subhamoy Bhattacharya,et al.  Dynamics of offshore wind turbines supported on two foundations , 2013 .

[43]  Guy T. Houlsby,et al.  Drained Behaviour of Suction Caisson Foundations on Very Dense Sand , 1999 .

[44]  Mark Randolph,et al.  THE EFFECT OF EMBEDMENT DEPTH ON THE UNDRAINED RESPONSE OF SKIRTED FOUNDATIONS TO COMBINED LOADING , 1999 .

[45]  Sang-Seom Jeong,et al.  Slip effect at the pile¿soil interface on dragload , 2004 .

[46]  Guy T. Houlsby,et al.  Laboratory Testing of Shallow Skirted Foundations in Sand , 2003 .

[47]  Kim André Larsen,et al.  Effect of Embedment on the Plastic Behavior of Bucket Foundations , 2015 .